• Title/Summary/Keyword: soil model

Search Result 4,495, Processing Time 0.037 seconds

An Estimation Method of Organic Matter Content Ratio for the Termination of Post-closure Maintenance of a Landfill (매립장 사후관리종료를 위한 유기물 함량비 산정방법)

  • Chun, Seung-Kyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.4
    • /
    • pp.11-19
    • /
    • 2019
  • This paper examines an assessment method for terminating the post-closure maintenance of a landfill using a simplified landfill gas model. The case study site is the Sudokwon Landfill in Incheon city, which was closed in 2000. The deviations of the results obtained by the regular model and the simplified model were both slightly over 10% from the measured data. Also, the deviation of the simplified model from the regular model has been less than 5% since 2005. Thus, the simplified model could be applied to other landfills that have been closed for at least 5 years. Additionally, the results of the mass balance analysis using the simplified landfill gas model indicated that 39% of the organic carbon was discharged, leading to organic carbon and organic matter content of 7.2 and 17.6%, respectively, in the landfill by the end of 2018.

New coefficients to find natural period of elevated tanks considering fluid-structure-soil interaction effects

  • Maedeh, Pouyan Abbasi;Ghanbari, Ali;Wu, Wei
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.949-963
    • /
    • 2017
  • The main purpose of the current study is to develop the new coefficients for consideration of soil-structure interaction effects to find the elevated tank natural period. Most of the recommended relations to find the natural period just assumed the fixed base condition of elevated tank systems and the soil effects on the natural period are neglected. Two different analytical systems considering soil-structure- fluid interaction effects are recommended in the current study. Achieved results of natural impulsive and convective period, concluded from mentioned models are compared with the results of a numerical model. Two different sets of new coefficients for impulsive and convective periods are developed. The values of the developed coefficients directly depend to soil stiffness values. Additional results show that the soil stiffness not only has significant effects on natural period but also it is effective on liquid sloshing wave height. Both frequency content and soil stiffness have significant effects on the values of liquid wave height.

Estimation of lateral pile resistance incorporating soil arching in pile-stabilized slopes

  • Neeraj, C.R.;Thiyyakkandi, Sudheesh
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.481-491
    • /
    • 2020
  • Piles installed in row(s) are used as an effective technique to improve the stability of soil slopes. The analysis of pile-stabilized slopes require a reliable prediction of lateral resistance offered by the piles. In this work, an analytical solution is developed to estimate the lateral resistance offered by the stabilizing piles in sand and c - 𝜙 soil slopes considering soil arching phenomenon. The soil arching in both horizontal direction (between the neighboring piles) and vertical direction (in the active wedge in front of the pile row) are studied and their effects are incorporated in the proposed model. The shape of soil arch is assumed to be circular and principal stress trajectories are defined separately for both modes of arching. Experimental and numerical studies found in literature were used to validate the proposed method. A detailed parametric analysis was performed to study the influence of pile diameter, center-to-center spacing, slope angle and angle of internal friction on the lateral pile resistance.

The influence of heavy metal on microbial biodegradation of organic contaminants in soil (토양내의 중금속이 유기오염물질 생분해에 미치는 영향 연구)

  • 최재영;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.196-201
    • /
    • 2000
  • The influence of adsorption on cadmium toxicity to soil microorganisms in smectite-rich soils and sediments was quantified as a function of solution and sorbent characteristics. Adsorption and surface complexation experiments were conducted to infer Cd sorption mechanisms to a reference smectite and three fractions of a Veritsol soil, and to elucidate the effects of the surface complexation on Cd bioavailability and toxicity in soils and sediments. Cadmium adsorption isotherms conformed to the Langmuir adsorption model, with adsorptive capacities of the different samples dependent on their characteristics. Equilibrium geochemical modeling (MINTEQA2) was used to predict the speciation of Cd in the soil suspensions using Langmuir and Triple Layer surface complexation models. The influence of adsorption and surface complexation on cadmium toxicity to soil microorganisms was assessed indirectly through the relative change in microbial hydrolysis of fluorescein diacetate (FDA) as a function of total Cd concentration and sorbent characteristics. Adsorption decreased the toxicity of Cd to soil microorganisms. Inner-sphere complexation is more effective than outer-sphere complexation in reducing the bioavailability and toxicity of heavy metals in soils and sediments.

  • PDF

Soil interaction effects on sloshing response of the elevated tanks

  • Livaoglu, Ramazan
    • Geomechanics and Engineering
    • /
    • v.5 no.4
    • /
    • pp.283-297
    • /
    • 2013
  • The aim of this paper is to investigate how the soil-structure interaction affects sloshing response of the elevated tanks. For this purpose, the elevated tanks with two different types of supporting systems which are built on six different soil profiles are analyzed for both embedded and surface foundation cases. Thus, considering these six different profiles described in well-known earthquake codes as supporting medium, a series of transient analysis have been performed to assess the effect of both fluid sloshing and soil-structure interaction (SSI). Fluid-Elevated Tank-Soil/Foundation systems are modeled with the finite element (FE) technique. In these models fluid-structure interaction is taken into account by implementing Lagrangian fluid FE approximation into the general purpose structural analysis computer code ANSYS. A 3-D FE model with viscous boundary is used in the analyses of elevated tanks-soil/foundation interaction. Formed models are analyzed for embedment and no embedment cases. Finally results from analyses showed that the soil-structure interaction and the structural properties of supporting system for the elevated tanks affected the sloshing response of the fluid inside the vessel.

Effect of suction on volume change and shear behaviour of an overconsolidated unsaturated silty soil

  • Estabragh, A.R.;Javadi, A.A.
    • Geomechanics and Engineering
    • /
    • v.4 no.1
    • /
    • pp.55-65
    • /
    • 2012
  • This paper presents the results of an experimental study on the effect of suction on compressibility and shear behaviour of unsaturated silty soil under various types of loading. A series of laboratory experiments were conducted in a double-walled triaxial cell on samples of a compacted silty soil. In the experiments the soil samples were subjected to isotropic consolidation followed by unloading and subsequent reloading under constant suction and prescribed overconsolidated ratio. The experimental results are presented in the context of an elasto-plastic model for unsaturated soil. The effects of suction on mechanical behaviour of unsaturated silty soil are presented and discussed. It is shown that increasing suction affects the shear behaviour of unsaturated soils, but there is a limit beyond which, further increase in suction will not result in any significant change in the behaviour.

Drought Estimation Model Using a Evaporation Pan with 50 mm Depth (50mm 깊이 증발(蒸發) 팬을 이용한 한발 평가 모델 설정)

  • Oh, Yong Taeg;Oh, Dong Shig;Song, Kwan Cheol;Um, Ki Cheol;Shin, Jae Sung;Im, Jung Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.2
    • /
    • pp.92-106
    • /
    • 1996
  • Imaginary grass field was assumed suitable as the representative one for simplified estimation of local drought, and a moisture balance booking model computing drought was developed with the limited numbers of its determining factors, such as crop coefficient of the field, reservoir capacity of the soil, and the beginning point of drought as defined by soil moisture status. The maximum effective rainfall was assumed to be the same as the available free space of soil reservoir capacity. The model is similar to a definite depth evaporation pan, which stores rainfall as much as the available free space on the water in it and consumes the water by evaporation. When the pan keeps water less than a certain defined level, it is droughty. The model simulates soil moisture deficit on the assumed grass field for the drought estimation. The model can assess the water requirement, drought intensity, and the index of yield decrement due to drought. The influencing intensity indices of the selected factors were 100, 21, and 16 respectively for crop coefficient, reservoir capacity, and drought beginning point, determined by the annual water requirements as influenced by them in the model. The optimum values of the selected factors for the model were respectively 58% for crop coefficient defined on the energy indicator scale of the small copper pan evaporation, 50 mm for reservoir capacity on the basis of the average of experimentally determined values for sandy loam, loam, clay loam, and clay soils, and 65% of the reservoir capacity for the beginning point of drought.

  • PDF

Two-dimensional Numerical Simulation of Rainfall-induced Slope Failure (강우에 의한 사면붕괴에 관한 2차원 수치모의)

  • Regmi, Ram Krishna;Jung, Kwan-Sue;Lee, Gi-Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.34-34
    • /
    • 2012
  • Heavy storms rainfall has caused many landslides and slope failures especially in the mountainous area of the world. Landslides and slope failures are common geologic hazards and posed serious threats and globally cause billions in monetary losses and thousands of casualies each year so that studies on slope stability and its failure mechanism under rainfall are being increasing attention of these days. Rainfall-induced slope failures are generally caused by the rise in ground water level, and increase in pore water pressures and seepage forces during periods of intense rainfall. The effective stress in the soil will be decreased due to the increased pore pressure, which thus reduces the soil shear strength, eventually resulting in slope failure. During the rainfall, a wetting front goes downward into the slope, resulting in a gradual increase of the water content and a decrease of the negative pore-water pressure. This negative pore-water pressure is referred to as matric suction when referenced to the pore air pressure that contributes to the stability of unsaturated soil slopes. Therefore, the importance is the study of saturated unsaturated soil behaviors in evaluation of slope stability under heavy rainfall condition. In an actual field, a series of failures may occur in a slope due to a rainfall event. So, this study attempts to develop a numerical model to investigate this failure mechanism. A two-dimensional seepage flow model coupled with a one-dimensional surface flow and erosion/deposition model is used for seepage analysis. It is necessary to identify either there is surface runoff produced or not in a soil slope during a rainfall event, while analyzing the seepage and stability of such slopes. Runoff produced by rainfall may result erosion/deposition process on the surface of the slope. The depth of runoff has vital role in the seepage process within the soil domain so that surface flow and erosion/deposition model computes the surface water head of the runoff produced by the rainfall, and erosion/deposition on the surface of the model slope. Pore water pressure and moisture content data obtained by the seepage flow model are then used to analyze the stability of the slope. Spencer method of slope stability analysis is incorporated into dynamic programming to locate the critical slip surface of a general slope.

  • PDF

Implicit Numerical Integration of Two-surface Plasticity Model for Coarse-grained Soils (Implicit 수치적분 방법을 이용한 조립토에 관한 구성방정식의 수행)

  • Choi, Chang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.9
    • /
    • pp.45-59
    • /
    • 2006
  • The successful performance of any numerical geotechnical simulation depends on the accuracy and efficiency of the numerical implementation of constitutive model used to simulate the stress-strain (constitutive) response of the soil. The corner stone of the numerical implementation of constitutive models is the numerical integration of the incremental form of soil-plasticity constitutive equations over a discrete sequence of time steps. In this paper a well known two-surface soil plasticity model is implemented using a generalized implicit return mapping algorithm to arbitrary convex yield surfaces referred to as the Closest-Point-Projection method (CPPM). The two-surface model describes the nonlinear behavior of coarse-grained materials by incorporating a bounding surface concept together with isotropic and kinematic hardening as well as fabric formulation to account for the effect of fabric formation on the unloading response. In the course of investigating the performance of the CPPM integration method, it is proven that the algorithm is an accurate, robust, and efficient integration technique useful in finite element contexts. It is also shown that the algorithm produces a consistent tangent operator $\frac{d\sigma}{d\varepsilon}$ during the iterative process with quadratic convergence rate of the global iteration process.

Analysis of Effecting Parameters on Extraction of Soil Contaminants using Vertical Drains - Focusing on Soil and Contaminants Physical Properties (연직배수재에 의한 토양오염물질 추출에 미치는 영향인자 분석 - 토양 및 오염유체의 물성치를 중심으로)

  • Lee, Haeng-Woo;Chang, Pyoung-Wuck;Kang, Byung-Yoon;Kim, Hyun-Tae
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.355-360
    • /
    • 2005
  • The properties of contaminants, contaminated soil, and the elapsed time are important factors to in-situ soil remediation. Gabr et. al. (1996) derived the solution equation of contaminant concentration ratio as initial one $(C/C_0)$ with time and spatial changes in contaminated area with vertical drains. The contaminant concentration ratio $(C/C_0)$ is analyzed with time and spatial changes as varying the effective diameter, porosity, shape factor, density of contaminated soil and temperature in ground and unit weight, viscosity of contaminants by using FLUSH1 model. Results from numerical analysis indicate that the most important factor to the in-situ soil remediation using vertical drains is the effective diameter of contaminated soil. It also shows that the viscosity of contaminants, porosity of soil, shape of soil, temperature in ground, unit weight of contaminants are, in order, affected to the soil remediation but density of soil is insignificant to the soil remediation.

  • PDF