• Title/Summary/Keyword: soil model

Search Result 4,495, Processing Time 0.028 seconds

DEM analyses of the mechanical behavior of soil and soil-rock mixture via the 3D direct shear test

  • Xu, Wen-Jie;Li, Cheng-Qing;Zhang, Hai-Yang
    • Geomechanics and Engineering
    • /
    • v.9 no.6
    • /
    • pp.815-827
    • /
    • 2015
  • The mechanical behavior of soil and soil-rock mixture is investigated via the discrete element method. A non-overlapping combination method of spheres is used to model convex polyhedron rock blocks of soil-rock mixture in the DEM simulations. The meso-mechanical parameters of soil and soil-rock interface in DEM simulations are obtained from the in-situ tests. Based on the Voronoi cell, a method representing volumtric strain of the sample at the particle scale is proposed. The numerical results indicate that the particle rotation, occlusion, dilatation and self-organizing force chains are a remarkable phenomena of the localization band for the soil and soil-rock mixture samples. The localization band in a soil-rock mixture is wider than that in the soil sample. The current research shows that the 3D discrete element method can effectively simulate the mechanical behavior of soil and soil-rock mixture.

Analysis of Mean Transition Time and Its Uncertainty between the Stable Modes of Water Balance Model

  • Lee, Jae-Soo
    • Korean Journal of Hydrosciences
    • /
    • v.6
    • /
    • pp.39-49
    • /
    • 1995
  • The surface hydrology of large land areas is susceptible to several preferred stable states with transitions between stable states induced by stochastic fluctuation. This comes about due to the close couping of land surface and atmospheric interaction. An interesting and important issue is the duration of residence in each mode. Mean transition times between the stable modes are analyzed for different model parameters or climatic types. In an example situation of this differential equation exhibits a bimodal probability distribution of soil moisture states. Uncertainty analysis regarding the model parameters is performed using a Monte-Carlo simulation method. The method developed in this research may reveal some important characteristics of soil moisture or precipitation over a large area, in particular, those relating to abrupt change in soil moisture or preciptation having extremely variable duration.

  • PDF

Measurements of Microwave Polarimetric Backscattering from a Wet Soil Surface and Comparison with a Semi-empirical Scattering Model

  • Oh, Yi-Sok
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.154-157
    • /
    • 1999
  • Microwave polarimetric backscattering from a wet soil surface had been measured using a Ku-band polarimetric scatterometer at the incidence angles ranging from 10$^{\circ}$ to 70$^{\circ}$ Since the accurate target parameters as well as the radar parameters are necessary for radar scattering modeling, a complete and accurate set of ground truth data were also collected, from which accurate measurements were made of the rms height, correlation length, and dielectric constant. The measured polarimetric backscattering coefficients (vv-, hh-, vh-, hv-polarizations) were compared with theoretical models and empirical models. A new semi-empirical model for microwave polarimetric radar backscattering from bare soil surfaces was developed using polarimetric radar measurements and the knowledge based on the theoretical and numerical solutions. The model was found to yield very good agreement with the backscattering measurements of this study.

  • PDF

Behavior of SCP Improved Ground with Installation of Sheet Pile (Sheet Pile 설치에 따른 SCP개량지반의 거동)

  • Yoo, Nam-Jae;Park, Byung-Soo;Jeong, Gil-Soo
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.211-218
    • /
    • 2002
  • The paper is to show the behavior of composit ground which is installed with sheet pile in soft soil improved by sand compaction pile. The results of load-settlement relationship, earth pressure, stress concentration characteristics, and final water content were obtained by centrifuge model test. Two cases of tests, installation of sheet pile on the corner and both side of the loading plate for the improved SCP ground which was designed twice of the footing width, were performed for the tests under the vertical and horizontal loading and both side of corner. Finite element program(CRISP) for sand compaction pile using elasto-plastic model and numerical analysis for soft soil using modified cam-clay constitutive equation were compared and analized with the results of model tests. The result of analysis show the increased bearing capacity of soil after, SCP and sheet pile was installed.

  • PDF

Placement of Colloidal Silica gel for the construction of a subsurface containment system

  • Kim, Meejeong;Park, Joo-Yang
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.66-69
    • /
    • 2001
  • A subsurface containment system which is constructed by pumping a gelling liquid (Colloidal Silica) into the unsaturated medium is investigated by developing a mathematical model and conducting numerical simulations. The proposed model is verified by comparing experimentally and numerically determined hydraulic conductivities of gel-treated soil columns at different Colloidal Silica (CS) injection volumes. The numerical experiments indicate that an impermeable gel layer is formed within the time period twice the gel-point. At the Same normalized time, the CS solutions with lower NaCl concentrations result ill further migration and poor Performance in plugging the pore space.

  • PDF

Investigation of Reducing Characteristics for the Spreading of Dredging Soil and the Diffusion of Contaminant by Silt Protector Curtain through Three Dimensional Numerical Model Experiment (3차원 수치모형실험을 통한 오탁방지막의 오염물질 및 준설토 확산 저감특성 조사)

  • Hong, Nam-Seeg
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.78-85
    • /
    • 2010
  • This study investigates reducing characteristics for the spreading of dredged soil and the diffusion of contaminant by silt protector curtain through three dimensional numerical experiment. The numerical medel is modified by combining the sediment transport characteristics for cohesive sediment into the previously developed model. Several numerical experiments have been given in order to investigate the reducing effect of silt protector using two dimensional numerical channel model under various parameters such as upstream flow velocity, depth of silt curtain and the position of dumped materials. Through the evaluation of several simulation results, we knew that the careful design has to be given in the determination of depth and position of silt protector.

염화에텐의 환원성 탈염소화 모텔을 이용한 수소 경쟁에 대한 평가

  • ;;Y. Yang;P. L. McCarty
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.117-121
    • /
    • 2002
  • A numerical model that describes the reductive dechlorination of tetrachloroethene(PCE) to ethene via cis-dichloroethene(CDCE) was developed. The model included two separated dehalogenator groups : one for PCE transformation to cDCE via TCE and the other for cDCE dehalogenation to ethene via VC, competitive inhibition between different chloroethene electron accepters, and competition for H$_2$ between dechlorination and methanogens. Model simulations suggest first, that PCE dechlorinators are better competitive with methanogens than cDCE dechlorinators. Second, not only the initial relative population size of dehalogenators and H$_2$-utilizing methanogens but also electron donor delivery strategies used greatly affects the degree of dehalogenation. As a result, all of factors in the above must be considered in order to achieve economical and successful bioremediation of contaminated soil and groundwater with chlorinated solvents.

  • PDF

Geometric Modeling and Trajectory Control Design for an Excavator Mechanism (굴삭기 작업장치부의 기하학적 동역학 모델링 및 궤적 제어에 관한 연구)

  • Kim, S.H.;Yoo, S.J.;Lee, K.I.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 2007
  • During the last few decades, excavation automation has been investigated to protect the operator from the hazardous working environment and to relieve the cost of the skilled operator. Therefore, a number of modelling and controller design methods of the hydraulic excavator are proposed in many literatures to realize the excavation automation. In this article, a geometric approach far the multi-body system modeling is adopted to develop the excavator mechanism model that contains 4 kinematic loops and 12 links. Considering a simple soil mechanism model with a number of uncertain soil parameters, an adaptive trajectory tracking control strategy based on the developed excavator model is proposed. The improved performance of the designed controller over the simple PID controller is validated via the simulation study.

  • PDF

Prediction of Tractive Performance of Off-Road Wheeled Vehicles (로외에서 운용되는 휠형차량의 견인성능 예측)

  • 박원엽;이규승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.188-195
    • /
    • 2000
  • This study was conducted to develop the mathematical model and the computer simulation program(TPPMWV) for predicting the tractive performance of off-road wheeled vehicles operated on various soil conditions. The model takes into account main design parameters of a wheeled vehicle, including the radius and width of front and rear tires, the weight of vehicle, wheelbase and driving type(4WD, 2WD). Soil characteristics, such as the peressure-sinkage and shearing characteristics and the response to repetitive loading, are also taken into consideration. The effectiveness of the developed model was verified by comparing the predicted drawbar pulls using TPPMWV with measured ones obtained by field tests for two different driving types of wheeled vehicle. As a results, the drawbar pulls predicted by the TPPMWV were well matched to the measured ones within the absolute errors of 5.25%(4WD) AND 9.42%(2WD)for two different driving types, respectively.

  • PDF

Transmission Tower Grounding Design with Horizontal 2-Layer Soil Model (2층 토양모델을 가정한 송전철탑 접지설계)

  • Choi, J.K.;Kwak, J.S.;Woo, J.W.;Shim, E.B.;Kim, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.455-457
    • /
    • 2001
  • Grounding resistance is the basic performance indicator of grounding electrodes and the resistance has been calculated by simple equations, which is based on the assumption of uniform soil model. In this paper, tower grounding resistance is calculated assuming horizontally 2 layered soil model using finite element analysis method. A simple grouding design graph has been resulted from the calculation results.

  • PDF