• Title/Summary/Keyword: soil model

Search Result 4,495, Processing Time 0.04 seconds

논에서의 영양물질 배출량 추정( I ) - 모형의 개발 -

  • Chung, Sang-Ok;Kim, Hyeon-Soo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.4
    • /
    • pp.51-61
    • /
    • 2002
  • The objective of this study is to develop GLEANS-PADDY model to predict nutrients loading from paddy-field areas. This model is developed by modifying the GLEANS model which is used for uplands, and composed of hydrology and nutrient submodels. The optimal field size for CLEANS-PADDY model application is about up to 50 ha with mild slope, relatively homogeneous Soils and spatially rainfall, and a single crop farming. The CLEAMS model is modified to handle ponded soil surface condition and saturated soil profile in paddy field. In the hydrology submodel of the CLEAMS-PADDY model. the ponded depth routing method is used to handle the ponded water condition of paddy field. To compute potential evapotranspiration the FAO-24 Corrected Blaney-Criddle method is used for paddy field instead of Penman-Monteith method in the CLEAMS model. In the nutrients submodel of the CLEAMS-PADDY model, the soil was assumed saturated and soil profile in the root zone was divided into oxidized and reduced zones.

Seismic evaluation of soil-foundation-structure interaction: Direct and Cone model

  • Khazaei, Jahangir;Amiri, Azadeh;Khalilpour, Mehrdad
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.251-262
    • /
    • 2017
  • The present research intends to study the effects of the seismic soil-foundation-structure interaction (SFSI) on the dynamic response of various buildings. Two methods including direct and Cone model were studied through 3D finite element method using ABAQUS software. Cone model as an approximate method to consider the SFSI phenomenon was developed and evaluated for both high and low rise buildings. Effect of soil nonlinearity, foundation rigidity and embedment as well as friction coefficient between soil-foundation interfaces during seismic excitation are investigated. Validity and performance of both approaches are evaluated as reference graphs for Cone model and infinite boundary condition, soil nonlinearity and amplification factor for direct method. A series of calculations by DeepSoil for inverse earthquake record modification was conducted. A comparison of the two methods was carried out by root-mean-square-deviation (RMSD) tool for maximum lateral displacement and story shear forces which verifies that Cone model results have good agreement with direct method. It was concluded that Cone method is a convenient, fast and rather accurate method as an approximate way to count for soil media.

Preparation of Soil Input Files to a Crop Model Using the Korean Soil Information System (흙토람 데이터베이스를 활용한 작물 모델의 토양입력자료 생성)

  • Yoo, Byoung Hyun;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.174-179
    • /
    • 2017
  • Soil parameters are required inputs to crop models, which estimate crop yield under a given environment condition. The Korean Soil Information System (KSIS), which provides detailed soil profile record of 390 soil series in the HTML (HyperText Markup Language) format, would be useful to prepare soil input files. Korean Soil Information System Processing Tool (KSISPT) was developed to aid generation of soil input data based on the KSIS database. Java was used to implement the tool that consists of a set of modules for parsing the HTML document of the KSIS, storing data required for preparing soil input file, calculating additional soil parameter, and writing soil input file to a local disk. Using the automated soil data preparation tool, about 940 soil input data were created for the DSSAT model and the ORYZA 2000 model, respectively. In combination with soil series distribution map at 30m resolution, spatial analysis of crop yield could be projected under climate change, which would help the development of adaptation strategies.

Analysis of the Effect of Soil Depth on Landslide Risk Assessment (산사태 조사를 통한 토층심도가 산사태 발생 위험성에 미치는 영향 분석)

  • Kim, Man-Il;Kim, Namgyun;Kwak, Jaehwan;Lee, Seung-Jae
    • The Journal of Engineering Geology
    • /
    • v.32 no.3
    • /
    • pp.327-338
    • /
    • 2022
  • This study aims to empirically and statistically predict soil depths across areas affected by landslides. Using soil depth measurements from a landslide area in Korea, two sets of soil depths are calculated using a Z-model based on terrain elevation and a probabilistic statistical model. Both sets of calculation results are applied to derive landslide risk using the saturated infiltration depth ratio of the soil layer. This facilitates analysis of the infiltration of rainfall into soil layers for a rainfall event. In comparison with the probabilistic statistical model, the Z-model yields soil depths that are closer to measured values in the study area. Landslide risk assessment in the study area based on soil depth predictions from the two models shows that the percentage of first-grade landslide risk assessed using soil depths from the probabilistic statistical model is 2.5 times that calculated using soil depths from the Z-model. This shows that soil depths directly affect landslide risk assessment; therefore, the acquisition and application of local soil depth data are crucial to landslide risk analysis.

Simulation of Soil Erosion due to Snow Melt at Alpine Agricultural Lands (고령지 농경지에서 융설에 의한 토양유실량 모의)

  • Heo, Sung-Gu;Lim, Kyoung-Jae;Kim, Ki-Sung;Myung, SaGong;An, Jae-Hun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.241-246
    • /
    • 2005
  • Doam watershed is located at alpine areas in the Kangwon province. The annual average precipitation, including snow accumulation during the winter, at the Doam watershed is significantly higher than other areas. Thus, pollutant laden runoff and sediment discharge from the alpine agricultural fields are causing water quality degradation at the Doam watershed. To estimate soil erosion from the agricultural fields, the Universal Soil Loss Equation (USLE) has been widely used because of its simplicity to use. The USLE rainfall erosivity (R) factor is responsible for impacts of rainfall on soil erosion. Thus, use of constant R factor for the Doam watershed cannot reflect variations in precipitation patterns, consequently soil erosion estimation. In the early spring at the Doam watershed, the stream flow increases because of snow melt, which results in erosion of loosened soil experiencing freezing and thaw during the winter. However, the USLE model cannot consider the impacts on soil erosion of freezing and thaw of the soil. Also, it cannot simulate temporal changes in USLE input parameters. Thus, the Soil and Water Assessment Tool (SWAT) model was investigated for its applicability to estimate soil erosion at the Doam watershed, instead of the widely used USLE model. The SWAT hydrology and erosion/sediment components were validated after calibration of the hydrologic component. The $R^2$ and Nash-Sutcliffe coefficient values are higher enough, thus it was found the SWAT model can be efficiently used to simulate hydrology and sediment yield at the Doam watershed. The effects of snow melt on SWAT estimated stream flow and sediment were investigated using long-term precipitation and temperature data at the Doam watershed. It was found significant amount of flow and sediment in the spring are contributed by melting snow accumulated during the winter. Thus, it is recommend that the SWAT model capable of simulating snow melt and long-term weather data needs to be used in estimating soil erosion at alpine agricultural land instead of the USLE model for successful soil erosion management at the Doam watershed.

  • PDF

Effect of Transport Capacity Formula on Spatial Distribution of Soil Erosion

  • Nguyen, Van Linh;Yeon, Minho;Cho, Seongkeun;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.150-150
    • /
    • 2021
  • Soil erosion due to climate change is one of the global environmental issues. Especially, Korea is vulnerable to soil erosion as the frequency of extreme rainfall events and rainfall intensity are increasing. Soil erosion causes various problems such as reduced farmlands, deterioration of water quality in rivers, etc. To these severe problems, understanding the process of soil erosion is the first process. Then, it is necessary to quantify and analyze soil ersoion using an erosion model. Soil erosion models are divided into empirical, conceptual, and physics-based models according to the structures and characteristics of models. This study used GSSHA (Gridded Surface Subsurface Hydrologic Analysis), the physics-based erosion model, running on WMS (Watershed Modeling System) to analyze soil erosion vulnerability of the CheonCheon watershed. In addition, we compared the six sediment transport capacity formulas provided in the model and evaluated the equations fir on this study site. Therefore, this result can be as a primary tool for soil conservation management.

  • PDF

Improving Satellite Derived Soil Moisture Data Using Data Assimilation Methods (자료동화 기법을 이용한 위성영상 추출 토양수분 자료 개선)

  • Hwang, Soonho;Ryu, Jeong Hoon;Kang, Moon Seong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.152-152
    • /
    • 2018
  • Soil moisture is a important factor in hydrologic analysis. So, if we have spatially distributed soil moisture data, it can help to study much research in a various field. Recently, there are a lot of satellite derived soil moisture data, and it can be served through web freely. Especially, NASA (National Aeronautics and Space Administration) launched the Soil Moisture Aperture Passive (SMAP) satellite for mapping global soil moisture on 31 January 2015. SMAP data have many advantages for study, for example, SMAP data has higher spatial resolution than other satellited derived data. However, becuase many satellited derived soil moisture data have a limitation to data accuracy, if we have ancillary materials for improving data accuracy, it can be used. So, in this study, after applying the alogorithm, which is data assimilation methods, applicability of satellite derived soil moisture data was analyzed. Among the various data assimilation methods, in this study, Model Output Statistics (MOS) technique was used for improving satellite derived soil moisture data. Model Output Statistics (MOS) is a type of statistical post-processing, a class of techniques used to improve numerical weather models' ability to forecast by relating model outputs to observational or additional model data.

  • PDF

Estimation model of shear strength of soil layer using linear regression analysis (선형회귀분석에 의한 토층의 전단강도 산정모델)

  • Lee, Moon-Se;Kim, Kyeong-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1065-1078
    • /
    • 2009
  • The shear strength has been managed as an important factor in soil mechanics. The shear strength estimation model was developed to evaluate the shear strength using only a few soil properties by the linear regression analysis model which is one of the statistical methods. The shear strength is divided into two part; one is the internal friction angle ($\Phi$) and the other is the cohesion (c). Therefore, some valid soil factors among the results of soil tests are selected through the correlation analysis using SPSS and then the model are formulated by the linear regression analysis based on the relationship between factors. Also, the developed model is compared with the result of direct shear test to prove the rationality of model. As the results of analysis about relationship between soil properties and shear strength, the internal friction angle is highly influenced by the void ratio and the dry unit weight and the cohesion is mainly influenced by the void ratio, the dry unit weight and the plastic index. Meanwhile, the shear strength estimated by the developed model is similar with that of the direct shear test. Therefore, the developed model may be used to estimate the shear strength of soils in the same condition of study area.

  • PDF

The selection of soil erosion source area of Dechung basin (대청호유역의 토사유실 원인지역 선정)

  • Lee, Geun-Sang;Hwang, Eui-Ho;Koh, Deuk-Koo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1997-2002
    • /
    • 2007
  • This study selected soil erosion source area of Dechung basin by soil erosion estimation model and field survey for effective soil conservation planning and management. First, unit soil erosion amount of Dechung basin is analyzed using RUSLE (Revised Universal Soil Loss Equation) model based on DEM (Digital Elevation Model), soil map, landcover map and rainfall data. Soil erosion model is difficult to analyze the tracing route of soil particle and to consider the characteristics of bank condition and the types of crop, multidirectional field survey is necessary to choice the soil erosion source area. As the result of analysis of modeling value and field survey, Mujunamde-, Wondang-, Geumpyong stream are selected in the soil erosion source area of Dechung basin. Especially, these areas show steep slope in river boundary and cultivation condition of crop is also weakness to soil erosion in the field survey.

  • PDF

Development of Soil Organic Carbon Storage Estimation Model Using Soil Characteristics (토양 특성을 이용한 토양유기탄소저장량 산정 모형 개발)

  • Lee, Taehwa;Kim, Sangwoo;Shin, Yongchul;Jung, Younghun;Lim, Kyoung-Jae;Yang, Jae E;Jang, Won Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.1-8
    • /
    • 2019
  • Carbon dioxide is one of the major driving forces causing climate changes, and many countries have been trying to reduce carbon dioxide emissions from various sources. Soil stores more carbon dioxide(two to three times) amounts than atmosphere indicating that soil organic carbon emission management are a pivotal issue. In this study, we developed a Soil Organic Carbon(SOC) storage estimation model to predict SOC storage amounts in soils. Also, SOC storage values were assessed based on the carbon emission price provided from Republic Of Korea(ROK). Here, the SOC model calculated the soil hydraulic properties based on the soil physical and chemical information. Base on the calculated the soil hydraulic properties and the soil physical chemical information, SOC storage amounts were estimated. In validation, the estimated SOC storage amounts were 486,696 tons($3.526kg/m^2$) in Jindo-gun and shown similarly compared to the previous literature review. These results supported the robustness of our SOC model in estimating SOC storage amounts. The total SOC storage amount in ROK was 305 Mt, and the SOC amount at Gyeongsangbuk-do were relatively higher than other regions. But the SOC storage amount(per unit) was highest in Jeju island indicating that volcanic ashes might influence on the relatively higher SOC amount. Based on these results, the SOC storage value was shown as 8.4 trillion won in ROK. Even though our SOC model was not fully validated due to lacks of measured SOC data, our approach can be useful for policy-makers in reducing soil organic carbon emission from soils against climate changes.