• Title/Summary/Keyword: soil model

Search Result 4,495, Processing Time 0.028 seconds

Seismic performance evaluation of a steel slit damper for retrofit of structures on soft soil

  • Mahammad Seddiq Eskandari Nasab;Jinkoo Kim;Tae-Sang Ahn
    • Steel and Composite Structures
    • /
    • v.51 no.1
    • /
    • pp.93-101
    • /
    • 2024
  • This paper presents an experimental and analytical study on a steel slit damper designed as an energy dissipative device for earthquake protection of structures considering soil-structure interaction. The steel slit damper is made of a steel plate with a number of slits cut out of it. The slit damper has an advantage as a seismic energy dissipation device in that the stiffness and the yield force of the damper can be easily controlled by changing the number and size of the vertical strips. Cyclic loading tests of the slit damper are carried out to verify its energy dissipation capability, and an analytical model is developed validated based on the test results. The seismic performance of a case study building is then assessed using nonlinear dynamic analysis with and without soil-structure interaction. The soil-structure system turns out to show larger seismic responses and thus seismic retrofit is required to satisfy a predefined performance limit state. The developed slit dampers are employed as a seismic energy dissipation device for retrofitting the case study structure taking into account the soil-structure interaction. The seismic performance evaluation of the model structure shows that the device works stably and dissipates significant amount of seismic energy during earthquake excitations, and is effective in lowering the seismic response of structures standing on soft soil.

Optimal mixing proportion of bottom-ash-based controlled low strength material for high fillability

  • Youngsu Lee;Taeyeon Kim;Bongjik Lee;Seongwon Hong
    • Geomechanics and Engineering
    • /
    • v.38 no.6
    • /
    • pp.541-551
    • /
    • 2024
  • Bottom ash classifies as a hazardous industrial-waste material that adversely affects human health. This study proposes its mixing with controlled low strength materials (CLSM) as a probable recycling approach. To this end, experiments have been performed to investigate the applicability of bottom-ash-based CLSM that comprises eco-friendly soil binders, water, fly ash, and a combination of bottom ash and weathered granite soil. The physical and chemical properties of the weathered granite soil, bottom ash, fly ash, and soil binders are analyzed via laboratory tests, including X-ray diffraction and scanning electron microscopy. To determine an appropriate CLSM mixing proportion, the flowability test is first performed on three mixture types having three replacement ratios of fly ash each. Subsequently, compressive-strength tests are performed. Based on the results of these tests, four mixtures are selected for the freeze-and-thaw test to determine the appropriate mixing proportion. Finally, the ground model and soil-contamination tests are performed to examine the field applicability of the mixture. This study confirms that bottom-ash-based CLSM causes negligible soil contamination, and it satisfies the prescribed performance requirements and contamination standards in Korea.

Reliability analyses of a prototype soil nail wall using regression models

  • Sivakumar Babu, G.L.;Singh, Vikas Pratap
    • Geomechanics and Engineering
    • /
    • v.2 no.2
    • /
    • pp.71-88
    • /
    • 2010
  • Soil nailing technique is being widely used for stabilization of vertical cuts because of its economic, environment friendly and speedy construction. Global stability and lateral displacement are the two important stability criteria for the soil nail walls. The primary objective of the present study is to evaluate soil nail wall stability criteria under the influence of in-situ soil variability. Finite element based numerical experiments are performed in accordance with the methodology of $2^3$ factorial design of experiments. Based on the analysis of the observations from numerical experiments, two regression models are developed, and used for reliability analyses of global stability and lateral displacement of the soil nail wall. A 10 m high prototype soil nail wall is considered for better understanding and to highlight the practical implications of the present study. Based on the study, lateral displacements beyond 0.10% of vertical wall height and variability of in-situ soil parameters are found to be critical from the stability criteria considerations of the soil nail wall.

Numerical Analysis for the Effect of Ground and Groundwater Conditions on the Performance of Ground Source Heat Pump Systems (토양 및 지하수 조건이 지열공조시스템의 성능에 미치는 영향에 관한 수치 해석적 연구)

  • Nam, Yu-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.5
    • /
    • pp.321-326
    • /
    • 2011
  • Recently, ground source heat pump (GSHP) systems have been introduced in many modem buildings which use the annually stable characteristic of underground temperature as one of the renewable energy uses. However, all of GSHP systems cannot achieve high level of energy efficiency and energy-saving, because their performance significantly depends on thermal properties of soil, the condition of groundwater, building loads, etc. In this research, the effect of thermal properties of soil on the performance of GSHP systems has been estimated by a numerical simulation which is coupled with ground heat and water transfer model, ground heat exchanger model and surface heat balance model. The thermal conductivity of soil, the type of soil and the velocity of groundwater flow were used as the calculation parameter in the simulation. A numerical model with a ground heat exchanger was used in the calculation and, their effect on the system performance was estimated through the sensitivity analysis with the developed simulation tool. In the result of simulation, it founds that the faster groundwater flow and the higher heat conductivity the ground has, the more heat exchange rate the system in the site can achieve.

Determination of the Frozen Penetration Depth of a Freezing Soil Medium including a Pipeline in a Closed System (파이프라인이 매설된 폐쇄형 동결토의 동결심도 결정)

  • Song Weon-Keun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.451-458
    • /
    • 2004
  • The study was focused on the development of computational scheme in three dimensional configurations by applying effective heat capacity model to the numerical procedure in order to predict the temperature profiles of a buried pipeline and the frozen penetration depth(FPD) of a freezing soil medium. To realize this, the investigator conducted the unsteady state heat transfer analysis, using the commercial code ABAQUS, for the freezing granite soil medium including a pipeline in a closed system. The proposed model took into consideration the phase change effect of in situ pore water in the frozen fringe. The comparison of results obtained by the proposed model and the actual performances was valuable in establishing a level of confidence in the application of introduced theory.

A Semi-empirical Model for Microwave Polarimetric Radar Backscattering from Bare Soil Surfaces

  • Oh, Yi-Sok
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.2
    • /
    • pp.17-35
    • /
    • 1994
  • A semi-empirical model for microwave polarimetric radar backscattering from bare soil surfaces was developed using polarmetric radar measurements and the knowledge based on the theoretical and numerical solutions. The microwave polarimetric backscatter measurements were conducted for bare soil surfaces under a variety of roughness and moisture conditions at L-, C-, and X-band frequencies at incidence angles ranging from 10` to 70`. Since the accrate target parameters as well as the radar parameters are necessary for radar scattering modeling, a complete and accurate set of ground truth data were also collected using a laser profile meter and dielectric probes for each surface condition, from which accurate measurements were made of the rms height, correlation length, and dielectric constant. At first, the angular and spectral dependencies of the measured radar backscatter for a wide range of roughnesses and moisture conditions are examined. Then, the measured scattering behavior was tested using theoretical and numerical solutions. Based on the experimental observations and the theoretical and numerical solutions, a semi-empirical model was developed for backscattering coeffients in terms of the surface roughness parameters and the relative dielectric constant of the soil surface. The model was found to yield very good agreement with the backscattering measurements of this study as well as with independent measurements.

Effects of structural characteristics of screw conveyor on spewing during EPB shield tunnelling

  • Xiaochun Zhong;Siyuan Huang;Rongguo Huai;Yikang Hu;Xuquan Chen
    • Geomechanics and Engineering
    • /
    • v.35 no.6
    • /
    • pp.571-580
    • /
    • 2023
  • During EPB shield tunnelling, construction speed and safety are severely affected by spewing. In this study, a theoretical seepage model is established to capture of the effects of screw conveyor geometry and turbulent flow on spewing. Experimental test results are used to verify the proposed theoretical seepage model. It is found that the seepage is greatly affected by the length of screw conveyor and soil permeability. The proposed model can increase the screw conveyor length and reduce soil discharge sections simultaneously, the permeability of treated muck thus decreases by one order of magnitude. By using the proposed theoretical seepage model, the criterion of critical soil permeability used to identify spewing is proposed. When the water head applied at tunnel face reaches 40 m and 50 m, the critical permeability coefficients of treated muck should be less than 10-5 m/s and 10-6 m/s to avoid spewing. For a given permeability coefficient of soil, the water flow rate is overestimated if structural characteristics of screw conveyor is not considered. Consequently, the occurrence of spewing is greatly overestimated, which increases construction cost substantially.

Instability Analysis of Unsaturated Soil Slope Considering Wet Condition (습윤상태를 고려한 불포화 토사사면의 불안정성 해석)

  • Kim, Yong Min;Kim, Jaehong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1489-1498
    • /
    • 2013
  • The monolithically coupled finite element analysis for a deformable unsaturated soil slope is performed to investigate the effect of antecedent rainfall which is assumed by initial conditions varying degree of saturation (36, 51, 77%) in finite element analysis. The distributions of matric suction and deformation on slope surface obtained from numerical simulation show the instability of antecedent rainfall-induced unsaturated soil slope. Moreover, the numerical analysis using Drucker-Prager model can be checked if a soil slope has reached failure (trial failure criterion $f^{tr}$ >0, plastic behavior) or not (trial failure criterion $f^{tr}$ < 0, elastic behavior). It is found that displacement of slope surface layer increases and the matric suction on soil slope decreases with an increase of initial degree of saturation by antecedent rainfall. Especially, the matric suction of the soil slope in dry condition (S=36%) rapidly decreases rather than that in wet condition (S=51%) at the same rainfall duration. The results of the trial failure criterion ($f^{tr}$ > 0) show slope instability in the toe region and surface of the slopes.

Characteristics of Soil Parameter for Lade's Single Work-Hardening Constitutive Model with Dry Density of Pocheon Granite Soil (포천 화강토의 건조단위중량에 따른 Lade의 단일항복면 구성모델의 토질매개변수 특성)

  • Cho, Won-Beom;Kim, Chan-Kee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.29-36
    • /
    • 2011
  • In this study, a series of the isotropic compression-expansion tests and the drained triaxial tests were performed on Pocheon granite soil with various the dry densities of $16.67kN/m^3$, $17.26kN/m^3$ and $17.65kN/m^3$. Using the tests results the characteristic of the parameters of Lade's single hardening constitutive model were investigated. The soil parameters such as kur and n related to elastic behavior, m and ${\eta}_1$ related to failure criterion, c and p related to hardening function and ${\psi}_2$ and ${\mu}$ related to plastic potential show in a positive linear relationship with the dry density. Since the soil parameters h and representing yield function do not change much to relative density and also are closely related to failure criterion, they can be replaced by failure criterion. We also observed that predicted values from the Lade's single hardening constitutive model were well consistent with the observed data.

Impact of Climate Change on Water Cycle and Soil Loss in Daecheong Reservoir Watershed (기후변화에 따른 대청호 유역의 물 순환 및 토양 유실량 영향)

  • Ye, Lyeong;Chung, Se Woong;Oh, Dong Geun;Yoon, Sung Wan
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.821-831
    • /
    • 2009
  • The study was aimed to assess the expected impact of climate change on the water cycle and soil losses in Daecheong Reservoir watershed, Korea using the Soil and Water Assessment Tool (SWAT) that was validated for the watershed in a previous study. Future climate data including precipitation, temperature and humidity generated by introducing a regional climate model (Mesoscale Model Version 5, MM5) to dynamically downscale global circulation model (European Centre Hamburg Model Version 4, ECHAM4) were used to simulate the hydrological responses and soil erosion processes in the future 100 years (2001~2100) under the Special Report on Emissions Scenario (SRES) A1B. The results indicated that the climate change may increase in the amount of surface runoff and thereby sediment load to the reservoir. Spatially, the impact was relatively more significant in the subbasin Bocheongcheon because of its lower occupation rate of forest land compared to other subbasins. Seasonally, the increase of surface runoff and soil losses was more significant during late summer and fall season when both flood control and turbidity flow control are necessary for the reservoir and downstream. The occurrence of extreme turbidity flow events during these period is more vulnerable to reservoir operation because the suspended solids that remained water column can be resuspended by vertical mixing during winter turnover period. The study results provide useful information for the development of adaptive management strategy for the reservoir to cope with the expected impact of future climate change.