• Title/Summary/Keyword: soil model

Search Result 4,496, Processing Time 0.034 seconds

Analysis on Dimensional Stability of Porosity Soil Block for Vegetation Reinforcement (식생강화를 위한 다공성 소일 블록의 치수안정성 해석)

  • Park, Sang Woo;Ahn, Tae Jin;Ahn, Sang Ho;Kwon, Soon Hyun
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.91-103
    • /
    • 2013
  • In this Research, in order to improve problems of not enough technical validation and structural and hydraulic stability evaluation when nature-friendly revetment block is applied to field, hydraulic stability evaluation according to hydraulic behavior change of porosity soil block for vegetation reinforcement that secures ecological function was reviewed. By selecting object section, numerical analysis and hydraulic model experiments were performed; for numerical analysis, by using 1-dimensional numerical analysis model HEC-RAS and 2-dimensional numerical analysis RMA-2, one-dimensional(1D) and two-dimensional(2D) numerical analysis were performed; by applying Froude's similarity law, reduced-scale hydraulic model experiments according to vegetation existence were performed. In hydraulic model experiment, for validity of experiment result, the result of velocity and tractive force of reduced-scale hydraulic model experiments was converted to prototype so that it can be compared and reviewed under the same condition of one-dimensional(1D) and two-dimensional(2D) numerical analysis result; as a result, it was confirmed that comparatively united result appeared, and by comparing prototype-converted tractive force result with revetment's allowable tractive force coming from an existing research, block's hydraulic stability was suggested.

Evaluation of L-THIA WWW Dimet Runoff Estimation with AMC Adjustment (선행토양함수조건(AMC)을 고려한 L-THIA WWW 직접유출 모의 정확성 평가)

  • Kim, Jonggun;Park, Younshik;Jeon, Ji-Hong;Engel, Bernard A.;Ahn, Jaehun;Park, Young Kon;Kim, Ki-sung;Choi, Joongdae;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.474-481
    • /
    • 2007
  • With population growth, industrialization, and urbanization within the watershed, the hydrologic response changed dramatically, resulting in increases in peak flow with lesser time to peak and total runoff with shortened time of concentration. Infiltration is directly affected by initial soil moisture condition, which is a key element to determine runoff. Influence of the initial soil moisture condition on hydrograph analysis should be evaluated to assess land use change impacts on runoff and non-point source pollution characteristics. The Long-Term Hydrologic Impact Assessment (L-THIA) model has been widely used for the estimation of the direct runoff worldwide. The L-THIA model was applied to the Little Eagle Creek (LEC) watershed and Its estimated direct runoff values were compared with the BFLOW filtered direct runoff values by other researchers. The $R^2$ value Was 0.68 and the Nash-Sutcliffe coefficient value was 0.64. Also, the L-THIA estimates were compared with those separated using optimized $BFI_{max}$ value for the Eckhardt filter. The $R^2$ value and the Nash-Sutcliffe coefficient value were 0.66 and 0.63, respectively. Although these higher statistics could indicate that the L-THIA model is good in estimating the direct runoff reasonably well, the Antecedent Moisture Condition (AMC) was not adjusted in that study, which might be responsible for mismatches in peak flow between the L-THIA estimated and the measured peak values. In this study, the L-THIA model was run with AMC adjustment for direct runoff estimation. The $R^2$ value was 0.80 and the Nash-Sutcliffe coefficient value was 0.78 for the comparison of L-THIA simulated direct runoff with the filtered direct runoff. However there was 42.44% differences in the L-THIA estimated direct runoff and filtered direct runoff. This can be explained in that about 80% of the simulation period is classified as 'AMC I' condition, which caused lower CN values and lower direct runoff estimation. Thus, the coefficients of the equation to adjust CN II to CN I and CN III depending on AMC condition were modified to minimize adjustments impacts on runoff estimation. The $R^2$ and the Nash-Sutcliffe coefficient values increase, 0.80 and 0.80 respectively. The difference in the estimated and filtered direct runoff decreased from 42.44% to 7.99%. The results obtained in this study indicate the AMC needs to be considered for accurate direct runoff estimation using the L-THIA model. Also, more researches are needed for realistic adjustment of the AMC in the L-THIA model.

Water resources potential assessment of ungauged catchments in Lake Tana Basin, Ethiopia

  • Damtew, Getachew Tegegne;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.217-217
    • /
    • 2015
  • The objective of this study was mainly to evaluate the water resources potential of Lake Tana Basin (LTB) by using Soil and Water Assessment Tool (SWAT). From SWAT simulation of LTB, about 5236 km2 area of LTB is gauged watershed and the remaining 9878 km2 area is ungauged watershed. For calibration of model parameters, four gauged stations were considered namely: Gilgel Abay, Gummera, Rib, and Megech. The SWAT-CUP built-in techniques, particle swarm optimization (PSO) and generalized likelihood uncertainty estimation (GLUE) method was used for calibration of model parameters and PSO method were selected for the study based on its performance results in four gauging stations. However the level of sensitivity of flow parameters differ from catchment to catchment, the curve number (CN2) has been found the most sensitive parameters in all gauged catchments. To facilitate the transfer of data from gauged catchments to ungauged catchments, clustering of hydrologic response units (HRUs) were done based on physical similarity measured between gauged and ungauged catchment attributes. From SWAT land use/ soil use/slope reclassification of LTB, a total of 142 HRUs were identified and these HRUs are clustered in to 39 similar hydrologic groups. In order to transfer the optimized model parameters from gauged to ungauged catchments based on these clustered hydrologic groups, this study evaluates three parameter transfer schemes: parameters transfer based on homogeneous regions (PT-I), parameter transfer based on global averaging (PT-II), and parameter transfer by considering Gilgel Abay catchment as a representative catchment (PT-III) since its model performance values are better than the other three gauged catchments. The performance of these parameter transfer approach was evaluated based on values of Nash-Sutcliffe efficiency (NSE) and coefficient of determination (R2). The computed NSE values was found to be 0.71, 0.58, and 0.31 for PT-I, PT-II and PT-III respectively and the computed R2 values was found to be 0.93, 0.82, and 0.95 for PT-I, PT-II, and PT-III respectively. Based on the performance evaluation criteria, PT-I were selected for modelling ungauged catchments by transferring optimized model parameters from gauged catchment. From the model result, yearly average stream flow for all homogeneous regions was found 29.54 m3/s, 112.92 m3/s, and 130.10 m3/s for time period (1989 - 2005) for region-I, region-II, and region-III respectively.

  • PDF

Evaluation of Water Quality Impacts of Forest Fragmentation at Doam-Dam Watershed using GIS-based Modeling System (GIS 기반의 모형을 이용한 도암댐 유역의 산림 파편화에 따른 수(水)환경 영향 평가)

  • Heo, Sung-Gu;Kim, Ki-Sung;Ahn, Jae-Hun;Yoon, Jong-Suk;Lim, Kyoungjae;Choi, Joongdae;Shin, Yong-Chul;Lyou, Chang-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.81-94
    • /
    • 2006
  • The water quality impacts of forest fragmentation at the Doam-dam watershed were evaluated in this study. For this ends, the watershed scale model, Soil and Water Assessment Tool (SWAT) model was utilized. To exclude the effects of different magnitude and patterns in weather, the same weather data of 1985 was used because of significant differences in precipitation in year 1985 and 2000. The water quality impacts of forest fragmentation were analyzed temporarily and spatially because of its nature. The flow rates for Winter and Spring has increased with forest fragmentations by $8,366m^3/month$ and $72,763m^3/month$ in the S1 subwatershed, experiencing the most forest fragmentation within the Doam-dam watershed. For Summer and Fall, the flow rate has increased by $149,901m^3/month$ and $107,109m^3/month$, respectively. It is believed that increased flow rates contributed significant amounts of soil erosion and diffused nonpoint source pollutants into the receiving water bodies. With the forest fragmentation in the S1 watershed, the average sediment concentration values for Winter and Spring increased by 5.448mg/L and 13.354mg/L, respectively. It is believed that the agricultural area, which were forest before the forest fragmentation, are responsible for increased soil erosion and sediment yield during the spring thaw and snow melts. For Spring and Fall, the sediment concentration values increased by 20.680mg/L and 24.680mg/L, respectively. Compared with Winter and Spring, the increased precipitation during Summer and Fall contributed more soil erosion and increased sediment concentration value in the stream. Based on the results obtained from the analysis performed in this study, the stream flow and sediment concentration values has increased with forest fragmentation within the S1 subwatershed. These increased flow and soil erosion could contribute the eutrophication in the receiving water bodies. This results show that natural functionalities of the forest, such as flood control, soil erosion protection, and water quality improvement, can be easily lost with on-going forest fragmentation within the watershed. Thus, the minimize the negative impacts of forest fragmentation, comprehensive land use planning at watershed scale needs to be developed and implemented based on the results obtained in this research.

  • PDF

Application of SDAHL-74 Watershed Model to a Long Term Runoff Analysis in the Mountainous Watershed (산지유역에 대한 USDAHL-74 유역수문모형의 장기유출 해석적용)

  • 권순국;고덕구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.2
    • /
    • pp.53-63
    • /
    • 1987
  • Due to their wide range of application, deterministic comprehensive hydrologic models using digital computers have been developed in all countries of the world and researches are being undertaken for their appropriate applications. The aim of this study has been to demonstrate the practical implementation of a physically based distributed hydrologic model, the USDAHL-74 model and to investigate its ability to simulate the long term estimate of water balance quantities in a Korean mountainous watershed. Application of the model to Dochuk watershed indicates the following results. 1.Since the USDAHL-74 model includes all the major components of the hydrologic cycle in agricultural watersheds, thus is comprehnsive, the model seems to have a wide range of application from the fact that simulation results obtained are not only runoff volumes m various time units but their spatial variation as well as even soil moisture within the watershed. 2.An approximate calibration to determine the parameter values in the model using various data obtained from D0chuk shed shows that the simulation error of yearly runoff volume is only 0.6 % and a correlation coefficient between observed daily runoff volume and simulated one is 0.91 in all calibrated period.3.As a verification test of the model, runoff volumes are simulated using 1986 year data without changing the parameter values determined by 1985 year data. The tests show that the USDAHL-74 model is a flexible tool and that realistic production to simulate the long term estimate of runoff in Korean mountainous watershed could be obtained using only a short period of calibration.4. Despite of the encouraging results, there still remain minor problems concerning the practical application of the model to improve the result of simulations. Some of these are the small descrepancies between observed and simulated daily runoff volume appeared in the vicinity of peaks and the recession of1 the daily hydrographs and the model performance for the frozen ground and melting process in the model. 5. Alough the use of parameter with physical significance and the ability to improve calibrations on the basis of physical reasoning represents advantages in the simulation for ungaged watersheds, further researches are needed to use the USDAHL-74 mode to simulate runoff in ungaged watersheds.

  • PDF

Application of an Elasto- Plastic Model to Soils Reinforced by Geosynthetics

  • ;Atsushi Iizuka;Katsuyuki Kawai
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.884-891
    • /
    • 2003
  • 이 논문는 지오신텍스 보강토 구조물의 보강 메카니즘을 수치계산을 통해 규명하고자 하는 목적으로 쓰여졌다. 이 연구에서는 보강 메카니즘은 전단에 의한 다짐토의 체적 팽창(부의 다일렌탄시)을 지오신텍티스에 의해 구속 억제하는 과정에서 생성되는 효과로 간주하고 있다. 보강 메카니즘의 규명을 위해 1992년 일본 Kanazawa에서 실시된 실모형 실험과 실내 실험 결과를 이용하였으며. 수치계산에서는 다짐토의 다일렌탄시 특성을 표현 가능한 탄소성 구성모델을 이용하여 유한요소(FEM)을 이용하고 있다. 수치 계산에 의해 실모형, 실험 실내실험 결과를 비교 분석하였다.

  • PDF

System dentification of Apartment Buildings with Wall-Slab configuration using Modal Analysis (모드해석을 통한 벽식구조 아파트건물의 System Identification)

  • 장극관;천영수
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.191-197
    • /
    • 1998
  • This paper described the dynamic characteristics of 20-story apartment buildings from the results of full-scale measurements and analysis. The natural frequencies and mode shapes are quantified by measuring and analyzing ambient vibrations of the structure and compared with the results from dynamic analysis. Comparison with computed mode shapes and frequencies shows good agreement with the experimental results. It proved that it is important to estimate coupling beam and soil parameters through a comparison of the measured results with calculated results.

  • PDF

A Study on the Settlement Prediction of Reinforced Roadbeds (고속전철 강화노반의 침하예측에 관한 연구)

  • 황선근;신민호;이일화;조용권
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.346-353
    • /
    • 2000
  • The benefit of reinforced roadbeds, such as roadbed reinforced with slag and roadbed with crushed stone has been known among engineers. In this study, model soil box test is executed to determine optimum roadbed thickness. As a result, a empirical solution for the settlement of reinforced roadbeds was suggested. Furthermore, optimum thickness of reinforced roadbed could be determined based on the settlement characteristic of reinforced roadbed among the several variables.

  • PDF

Grounding model Image Reconstruction for Electric Power Facilities Using ERT (ERT를 이용한 전력설비용 대지모델 영상복원)

  • Boo, Chang-Jin;Choi, Seung-Joon;Jeong, Kwang-Ja;Ko, Bong-Woon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1751_1752
    • /
    • 2009
  • The accurate measurement of soil resistivity and earthing system resistance is fundamental to electrical safety. However, geological and meterological factors can have a considerable effect on the accuracy of conventional measurements and the validity of the measurement methods. This paper presents optimization method of dc resistivity data acquisition system using ERT.

  • PDF

Seismic base isolation for structures using river sand

  • Patil, S.J.;Reddy, G.R.;Shivshankar, R.;Babu, Ramesh;Jayalekshmi, B.R.;Kumar, Binu
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.829-847
    • /
    • 2016
  • Generally seismic isolation is achieved by supporting the structure on laminated rubber bearings, friction pendulum bearings, roller bearings etc. Very little work has been performed using soil as a base isolation media. Experiments and analytical work has been performed on a structural model with isolated footing and found encouraging results. Details of this work are presented in this paper.