• Title/Summary/Keyword: soil model

Search Result 4,496, Processing Time 0.031 seconds

Uplift Pressure Removal System in Underground Structure by Utilizing Geocomposite System (지오컴포지트를 이용한 양압력 제거공법)

  • Shin, Eun-Chul;Kim, Jong-In;Park, Jeong-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.9
    • /
    • pp.61-68
    • /
    • 2006
  • Recently the large scale civil engineering projects are being implemented by reclaiming the sea or utilizing seashore and river embankment areas. The reclaimed land and utilized seashore are mostly soft ground that doesn't have sufficient bearing capacity. This soft ground consists of fine-grained soil such as clayey and silty soils or large void soil like peat or loose sand. It has high ground water table and it may cause the failure and crock of building foundation by uplift pressure and ground water leakage. In this study, the permittivity and the transmissivity were evaluated with the applied normal pressure in the laboratory. The laboratory model tests were conducted by utilizing geocomposite drainage system for draining the water out to release the uplift pressure. The soil used in the laboratory drainage test was dredged soil from the reclaimed land where uplift pressure problems can arise in soil condition. Geocomposite drainage system was installed at the bottom of apparatus and dredged soil was layered with compaction. Subsequently the water pressure was supplied from the top of specimen and the quantities of drainage and the pore water pressure were measured at each step water pressure. The results of laboratory measurements were compared with theoretical values. For the evaluation of propriety of laboratory drainage test, 2-D finite elements analysis that can analyze the distribution and the transferring of pore water pressure was conducted and compared with laboratory test results.

Desorption Characteristics of Cobalt, Strontium, and Cesium in Natural Soil and Kaolin Using CMCD (CMCD를 이용한 자연토양 및 카올린에서의 코발트, 스트론튬, 세슘의 탈착 특성)

  • Choi, Jeonghak;Cheon, Kyeongho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.61-69
    • /
    • 2014
  • Carboxymethyl-${\beta}$-cyclodextrin (${\beta}$-CMCD), as a biodegradable surfactant with hydrophobic and hydrophilic properties, has potential advantages of being applicable to the simultaneous treatment of multiple contaminated soils. In this study, the desorption behaviors of r adionuclides such as cobalt (Co), strontium (Sr), and cesium (Cs) from the soil contaminated with them were experimentally investigated and the effectiveness of CMCD as a desorbent was evaluated. The desorption equilibrium of used radionuclides could be achieved within 1~3 hr and the desorption ratio from kaolin was higher than that from natural soil. The addition of CMCD of 2 g/L increased the desorption ratio by 5~20 % and the desorption ratio of used r adionuclides was shown in the order of Co > Cs > Sr. The experimental desorption data were fitted successfully by pseudo-second order kinetic model and the desorption rate of the r adionuclides was shown in the order of Cs > Co > Sr. Hysteresis between adsorption and desorption of the r adionuclides, as shown in the order of Sr > Co > Cs, increased as the desorption rate decreased. Consequently, it could be considered that the desorption rate was one of the significant factors of the hysteresis. The addition of CMCD as desorbent increased the amount of desorbed radionuclides and decreased the hysteresis. However, the CMCD could not completely desorb the radionuclides from soils even though the excess of CMCD was added.

Evaluation of Runoff and Sediment Yield Reduction with Diversion Ditch and Vegetated Swale Using WEPP Model (WEPP 모형을 이용한 우회수로 및 식생수로의 유출 및 토사유출 저감 평가)

  • Choi, Jae-Wan;Shin, Dong-Seok;Kim, Ik-Jae;Lim, Kyoung-Jae
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.11
    • /
    • pp.863-873
    • /
    • 2011
  • It has been known that soil erosion caused by water has been a serious problem worldwide. Thus various modeling techniques for conservationists, farmers, and other land users have been developed and utilized to estimate effects of numerous site-specific Best Management Practices on soil erosion reduction. The physical process-based WEPP model would provide both temporal and spatial estimates of soil loss within small watersheds and for hillslope profiles within small watersheds. Thus, the WEPP watershed version was applied to study watershed, located at Jawoon-ri, Gangwon to simulate diversion ditch and vegetated swale with detailed input data set. The sediment yield and runoff reduction rates reduced by 5.8% and 29.6% with diversion ditch and 9.8% and 14.5% with vegetated swale. With vegetated diversion ditch, runoff and sediment yield could be reduced by 11.8% and 40.4%, respectively. Based on the results obtained in this study, the WEPP model would be an useful tool to measure runoff and sediment yield reduction and establish site-specific sediment reduction best management plan.

A Simulation Study to Investigate Climatic Controls on Net Primary Production (NPP) of a Rugged Forested Landscape in the Mid-Western Korean Peninsula (기복이 심한 한반도 중서부 산림경관에서 기후가 순일차생산(NPP)에 미치는 영향에 대한 모사연구)

  • Eum Sungwon;Kang Sinkyu;Lee Dowon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.1
    • /
    • pp.66-77
    • /
    • 2005
  • We have investigated microclimatic controls on the spatiotemporal variations of net primary production (NPP) of a rugged forested watershed using the process-based biogeochemical model (BIOME-BGC). To validate the model simulation of water and carbon cycles at the plot scale, we have conducted field survey over deciduous broadleaf forest (DBF) and evergreen needleleaf forest (ENF) since 2000. The modeled values of soil temperature, soil moisture and soil respiration showed high correlation with those from the field measurements. The modeled seasonal changes of NPP showed high correlation with air temperature but no significant correlation with water related parameters. The precipitation frequency turned out to be the best climatic factor to explain the annual variation of NPP. Furthermore, NPP of ENF was more sensitive to precipitation frequency than that of DBF. With changes in vegetation cover and topography, the spatial distribution of NPP was of great heterogeneity, which was negatively correlated with the magnitude of NPP. Despite the annual precipitation of 1,400mm, NPP at the study site was constrained by the amount of water available for the vegetation. Such a modeling result should be verified by the field measurements.

Analysis on Characteristics of Sediment Produce by Landslide in a Basin 1. Simulation of Sediment Produce and its Verification (유역 내에서의 산사태에 의한 토사발생특성 분석 1. 토사발생모의 및 검증)

  • Yoo, Chul-Sang;Kim, Kee-Wook;Kim, Seong-Joon;Lee, Mi-Seon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.3
    • /
    • pp.133-145
    • /
    • 2010
  • This study analyzed the characteristics of sediment produce by landslide triggered by rainfall. One-dimensional unsaturated groundwater model and infinite slope stability analysis were used to estimate the behavior of soil moisture and slope stability according to rainfall, respectively. Slope stability analysis was performed considering on soil depth and characteristics of trees. As the results considering on recovery of the failed slopes, much amount of sediment was produced in 1963, 1970, and 2002. As the results of verification of simulation results using Landsat 5 TM images, we can find differences of landslide location between the results from model and satellite images. These differences can be caused by uncertainties of the rough parameters in the model. However, in the case that Obong-dam basin was divided into two subbasin, Wangsan-chun and Doma-chun basin, the results of each subbasin show errors around 20%. And only 4% of error occurred in the case of comparing landslide area on the entire Obong-dam basin. These errors seem insignificant considering on the errors which can be caused from the analyses in this study such as estimation of sediment produce, soil cover classification, and estimation of landslide area.

Estimation of Multimedia Environmental Distribution for Benzoyl peroxide Using EQC Model (EQC 모델을 이용한 벤조일 퍼록사이드의 다매체 환경거동 예측)

  • Kim, Mi-Kyoung;Bae, Hee-Kyung;Song, Sang-Hwan;Koo, Hyun-Ju;Kim, Hyun-Mi;Choi, Kwang-Soo;Jeon, Sung-Hwan;Lee, Moon-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1090-1098
    • /
    • 2005
  • Benzoyl peroxide is very toxic to aquatic organisms but environmental concentration or exposure effects were not studied. Distribution of the chemical among multimedia environment was estimated using EQC(Equilibrium Criterion) model based on the physical-chemical properties to evaluate the risk of benzoyl peroxide in environment. Level I describes a situation that 100,000 kg of benzoyl peroxide is emitted into the environment which is equilibrium and steady-state without degradation and advection condition. Level II describes a situation that a constant rate of 1,000kg/h of benzoyl peroxide is continuously discharged into the environment which is equilibrium and steady-state with degradation and advection condition. Level III describes a situation that 1,000 kg/h of benzoyl peroxide is continuously introduced in each air, water, soil, and sediment compartment which are non-equilibrium and steady-state with degradation, advection, and inter-media transfer condition. In Level I and II calculations the chemical was distributed to soil(68.3%) and water(28.7%). In Level III calculation it was primarily distributed to soil(99.9%) and overall residence time was estimated to be 3.4 years. Benzoyl peroxide can be persistent in environment.

Physical Property Factors Controlling the Electrical Resistivity of Subsurface (지반의 전기비저항을 좌우하는 물성요인)

  • Park Sam-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.2
    • /
    • pp.130-135
    • /
    • 2004
  • This paper describes the physical properties of the factors controlling the electrical resistivity of the subsurface. Resistivities of various types of soil and rock samples saturated with sodium chloride solutions having nine different concentrations were measured, and the measured resistivities of these samples were compared with calculated resistivities obtained using the conventional empirical formulas. From the results obtained, we observed that the resistivity of the soil and rock samples increases with increasing in pore-fluids resistivity regardless of the media type. However, between 20 and 200 ohm-m, which is the normal range of resistivity of groundwater, the resistivity of the pore-fluids have little or no effect on the resistivities of the samples used. Below 10 ohm-m, the resistivities of the samples are mainly controlled by the pore-fluids, whereas, in the normal range of resistivity of groundwater, the sample resistivities are controlled by their intrinsic matrix resistivity more than by the pore-fluids resistivity. Also, the measured resistivity of rock and soil samples having more than $20\%$ clay contents showed a good agreement with the calculated resistivity using the parallel resistance model whereas, the calculated resistivities of glass beads correlate with that obtained using Archie's formula. When the pore-fluid resistivity is high, the computation of the resistivity values of the samples using the Archie's formula could not be carried out. Through this study, we were able to confirm that the tests are only applicable to the parallel resistance model considering the intrinsic matrix resistivity within the normal resistivity range of groundwater in the subsurface.

A Comprehensive Groundwater Modeling using Multicomponent Multiphase Theory: 1. Development of a Multidimensional Finite Element Model (다중 다상이론을 이용한 통합적 지하수 모델링: 1. 다차원 유한요소 모형의 개발)

  • Joon Hyun Kim
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.89-102
    • /
    • 1996
  • An integrated model is presented to describe underground flow and mass transport, using a multicomponent multiphase approach. The comprehensive governing equation is derived considering mass and force balances of chemical species over four phases(water, oil, air, and soil) in a schematic elementary volume. Compact and systemati notations of relevant variables and equations are introduced to facilitate the inclusion of complex migration and transformation processes, and variable spatial dimensions. The resulting nonlinear system is solved by a multidimensional finite element code. The developed code with dynamic array allocation, is sufficiently flexible to work across a wide spectrum of computers, including an IBM ES 9000/900 vector facility, SP2 cluster machine, Unix workstations and PCs, for one-, two and three-dimensional problems. To reduce the computation time and storage requirements, the system equations are decoupled and solved using a banded global matrix solver, with the vector and parallel processing on the IBM 9000. To avoide the numerical oscillations of the nonlinear problems in the case of convective dominant transport, the techniques of upstream weighting, mass lumping, and elementary-wise parameter evaluation are applied. The instability and convergence criteria of the nonlinear problems are studied for the one-dimensional analogue of FEM and FDM. Modeling capacity is presented in the simulation of three dimensional composite multiphase TCE migration. Comprehesive simulation feature of the code is presented in a companion paper of this issue for the specific groundwater or flow and contamination problems.

  • PDF

An Evaluation of Soil-Water Characteristic Curve Model for Compacted Bentonite Considering Temperature Variation (온도 변화를 고려한 압축 벤토나이트 완충재의 함수특성곡선 모델 평가)

  • Yoon, Seok;Jeon, Jun-Seo;Go, Gyu-Hyun;Kim, Geon-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.10
    • /
    • pp.33-39
    • /
    • 2020
  • A geological repository has been considered as an option for the disposal of high-level radioactive waste (HLW). The HLW is disposed in a host rock at a depth of 500~1,000 meters below the ground surface based on the concept of engineered barrier system (EBS). The EBS is composed of a disposal canister, buffer material, backfill material, and gap-filling material. The compacted bentonite buffer is very important since it can restrain the release of radionuclide and protect the canister from the inflow of ground water. The saturation of the buffer decreases because high temperature in a disposal canister is released into the surrounding buffer material, but saturation of the buffer increases because of the inflow of ground water. The unsaturated properties of the buffer are critical input parameters for the entire safety assessment of the engineered barrier system. In Korea, Gyeongju bentonite can be considered as a candidate buffer material, but there are few test results of the unsaturated properties considering temperature variation. Therefore, this paper conducted experiment of soil-water characteristic curve for the Gyeongju compacted bentonite considering temperature variation under a constant water content condition. The relative error showed approximately 2% between test results and modified van-Genuchten model values.

Analysis of Hydrological Impact by Typhoon RUSA using Landsat Images and Hydrological Model (Landsat영상과 수문모형을 이용한 태풍 RUSA에 의한 수문영향 분석)

  • Lee, Mi-Seon;Park, Geun-Ae;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.5 s.154
    • /
    • pp.391-399
    • /
    • 2005
  • The purpose of this study is to evaluate hydrological impact by the land cover change of typhoon damage. For the typhoon RUSA (rainfall 1,402 mm) occurred in 2002 (August $31\;{\sim}$ September 1), satellite images of Landsat 7 ETM+ of September 29, 2000 and Landsat 5 TM of September 11, 2002 were selected, and each land cover was classified for Namdae-cheon watershed $192.7km^2$ located in the middle-eastern part of Korea Peninsula. SCS unit hydrograph for watershed runoff and Muskingum for streamflow routing of WMS HEC-1 was adopted. 30m resolution DEM & hydrological soil group using 1:50,000 soil map were prepared. The model was calibrated using three available data of storm events of 1985 to 1988 based on 1985 land cover condition. To predict the streamflow change by damaged land cover condition, rainfall of 50 years to 500 years frequency were generated using 2nd quantile of Huff method. The damaged land cover condition treated as bare soil surface increased streamflow of $50.1\;m^3/sec$ for 50 years rainfall frequency and $67.6\;m^3/sec$ for 500 years rainfall frequency based on AMC-I condition. There may be some speedy treatment by the government for the next coming typhoon damage.