• Title/Summary/Keyword: soil model

Search Result 4,496, Processing Time 0.028 seconds

A Study on the Behavior of George Massey Immersed Tunnel during Earthquake (지진 시 George Massey 침매터널의 거동에 관한 연구)

  • Park, Sung-Sik;Moon, Hong-Duk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4C
    • /
    • pp.221-230
    • /
    • 2008
  • The George Massey immersed tunnel passes the Fraser River near Vancouver, Western Canada. The tunnel was founded on sandy soils and its behavior during earthquake was analyzed by an effective stress constitutive model called UBCSAND. This model is able to calculate pore pressure rise and resulting tunnel movements due to cyclic loading. Centrifuge tests conducted at Rensselaer Polytechnic Institute (RPI) were used to verify the model performance. The centrifuge tests consisted of 2 models: Model 1 was designed for an original ground condition, Model 2 for a ground improvement by densification. In Model 1, large deformation of the tunnel was observed due to liquefaction of surrounding soil. Because of the densified zones around the tunnel the vertical and horizontal displacements of the tunnel in Model 2 was 50% less than Model 1. Measured excess pore pressures, accelerations, and displacements from centrifuge tests were in close agreement with the predictions of UBCSAND model. Therefore, the model can be used to predict seismic behavior of immersed tunnels on sandy soils and optimize liquefaction remediation methods.

Mobility of Carbon Nanomaterials in Soil Media (토양 매질체에서 탄소나노물질의 이동성)

  • Yi, In-Geol;Kang, Jin-Kyu;Kim, Song-Bae;Kim, Hyunjung;Han, Yosep;Eom, Ig-Chun;Jo, Eunhye;Park, Sun-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.8
    • /
    • pp.588-595
    • /
    • 2014
  • Carbon nanomaterials such as fullerene, carbon nanotube and graphene are representative nanomaterials and widely used in various fields. Carbon nanomaterials can be exposed to environments during their production, usage and disposal, spreading to different systems and posing a great threat to various ecological receptors. Researches are conducted in order to determine the possibility of groundwater exposure to carbon nanomaterials due to their release and passage through soils. If soils can play a significant role in limiting the transport of carbon nanomaterials, the possibility of groundwater exposure to carbon nanomaterials can be reduced greatly. This review paper presented the research works performed for the mobility of carbon nanomaterials in soil media. Also, the paper provided the factors affecting the transport of carbon nanomaterials in soil media along with the DLVO theory/colloid filtration theory/transport model, which are used to describe the transport of carbon nanomaterials in soil media. Recently, production of carbon nanomaterials and their commercial and environmental applications increase rapidly in Korea. Therefore, researches regarding the fate and transport of domestic carbon nanomaterials in soil environments should be performed in various environmental conditions.

Effectiveness Assessment on the Soil Temperature of KMA as Ground Heat Source Using CFD in Pit Area (CFD를 이용한 기상청 지중온도의 피트부분 지중열원 유용성 평가에 관한 연구)

  • Min, Joon Ki;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.8 no.5
    • /
    • pp.49-54
    • /
    • 2008
  • The experimental of temperature, humidity and velocity was taken from the underground pit which utilized the system of ground heat source quite similar to the cool-pit system. Also, through CFD analysis, one could review the effectiveness of analysis of future alternatives. Furthermore, the temperature range of mock up cool-pit system was analyzed by inputting the weather data of annual average soil temperature provided by KMA(Korea Meteorological Administration) into the fluid simulation of anticipated heat distribution. Firstly, the difference between the temperature of air exhaust of the pit or the temperature of air supply of the compressor room and the experimental data for the month of May from the CFD analysis came out to be $0.6^{\circ}C$ and $0.9^{\circ}C$ respectively with tolerance of 3.1% and 4.7%. Secondly, the difference between the temperature of air exhaust of the Pit or the temperature of air supply of the compressor room and the experimental data for the month of July from the CFD analysis came out to be $0.8^{\circ}C$ and $1.1^{\circ}C$ respectively with tolerance of 3.3% and 4.5%. Thirdly, for the month of May, the difference between the experimental data taken for the air exhaust of the Pit or the air supply of the compressor room and soil temperature provided by KMA for monthly and yearly average temperature of Jeonju region came out be $1.9^{\circ}C$ and $1.8^{\circ}C$ respectively with tolerance of 10.7% and 9.8%. Fourthly, for the month of July, the difference between the experimental data taken for the air exhaust of the Pit or the air supply of the compressor room and soil temperature provided by KMA for monthly and yearly average temperature of Jeonju region came out be $1.1^{\circ}C$ and $1.4^{\circ}C$ respectively with tolerance of 4.5% and 5.8%. The result of above experiments allowed us to establish CFD model set up as a verification tool that is based on experimental data collected within the Pit area. Also, one could confirm the possibility to apply weather data of soil temperature provided by KMA in order to anticipate proper value for CFD analysis.

An Experimental Study on the Estimation of Optimum Length of Soil Flow Protector with Wall Stiffness (벽체 강성에 따른 토사유입차단판의 최적 길이 산정에 관한 실험적 연구)

  • Yoo, Jae-Won;Seo, Min-Su;Son, Su-Won;Im, Jong-Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.789-799
    • /
    • 2019
  • The settlement hardly occurs in structures supported by pile foundation such as abutment, culvert but a cavity is formed in the lower part of a structure. As a result, soil discharged from the lateral ground to the cavity accelerates the settlement of the lateral ground of the structure, resulting in a larger settlement. Therefore, in order to prevent problems caused by cavity under the structure supported by pile foundation, soil Flow Protector (briefly called 'FLP'), which can be easily installed on the side of structure, was developed. In this study, an laboratory model test was carried out to prove the reduction effect of settlement and to estimate the optimal installation length of the FLP. As a result, the installation of the FLP reduced the settlement of the lateral ground and prevented the leakage of lateral ground soil into the cavity. If the stiffness of the FLP is small, the state or active earth pressure is generated in the upper part, which is not favorable for stability. But if the stiffness of the FLP is high enough, the passive earth pressure area is generated in the upper part, which will be advantageous for the stability. Also, the increased installation length of FLP is effective to reduce the settlement. And the ratio of the optimal length of the FLP to the box structure height (H = 250 mm) are flexible FLP 1.38, stiff FLP 0.73.

Suitability Assessment for Agriculture of Soils Adjacent to Abandoned Mining Areas Using Different Human Risk Assessment Models (인체 위해성평가 모델을 이용한 폐광산 주변 농경지 적합성 평가)

  • Lee, Jun-Su;Kim, Young-Nam;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.674-683
    • /
    • 2010
  • The current study was performed to examine the agricultural suitability of the cultivated upland nearby abandoned mining areas in Korea using three different scientific risk assessment models of Korea, USA and UK. For this, three mining sites DM, MG and KS were selected among 687 abandoned mines through preliminary risk assessment. A wide range of parameters were obtained through analysis of both soil and crop samples from the selected areas for heavy metal concentration and questionnaires to the communities along with the selected mining sites. Heavy metal concentration in soil samples was lower than the values previously reported by the Ministry of Environment (ME, 2002). However, both As and Cd concentration in the soil samples exceeded the concern level for agricultural area of the Soil Environment Conservation Act. Judging from the contaminant criteria for the crops, only Zn level in pepper, soybean and corn from the mining area DM exceeded the criteria whereas As, Cd, $Cr^{6+}$, Cu, Hg, Ni, Pb did not exceed the criteria. It was demonstrated that there would be human health risk by Pb accumulated in crops from both mining areas MG and KS when estimated by the risk assessment models of Korea and USA. Against it, results of the risk assessment model of UK showed human health risk by Pb in the crops from all study areas.

Soil Modelling Method to Design Bent Foundation with Drilled Shaft Pier (단일 현장타설말뚝의 설계시 지반 모델링 방법)

  • Jeon, Kyung-Soo;Han, Kyoung-Bong;Song, Pil-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.368-376
    • /
    • 2010
  • The bent foundation with single drilled shafts is suitable and economical in South Korea, which has good rock in a shallow depth. This foundation has been designed with an elastic design concept. To apply a plastic design concept written in Korea Bridge Design Criteria, a detail design regulation, which includes the method for a plastic hinge point to occur above the ground, rebar arrangement and soil modelling, should be defined. Soil modelling should be considered in the respect of structural engineer's practicality. In this paper, single drilled shaft piers with 1m diameter are constructed, and cyclic lateral load tests loaded at 4m above the ground are taken to examine the behavior. Reduced diameter shaft above the ground and remaining the steel casing under the ground were used to induce plastic hinge to occur above the ground. Simplified soil models such as elastic relation and p-y curve are adapted, and the prediction results are compared with test results. Prediction results of a model bridge were compared according to soil models with time domain analyses, and design criteria of soil were proposed.

  • PDF

Evaluation of Soil Organic Carbon of Upland Soil According to Fertilization and Agricultural Management Using DNDC Model (DNDC 모형을 이용한 시비와 영농관리에 따른 밭포장의 토양유기탄소 변동 평가)

  • Lee, Kyoungsook;Yoon, Kwangsik;Choi, Dongho;Jung, Jaewoon;Choi, Woojung;Lim, Sangsun
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • To mitigate the impacts of climate change on agricultural ecosystems, development of agricultural management for enhanced soil carbon sequestration is required. In this study, the effects of fertilizer types (chemical fertilizer and manure compost), cropping systems, and crop residue management on SOC(Soil Organic Carbon) sequestration were investigated. Summer corn and winter barley were cultivated on experimental plots under natural rainfall conditions for two years with chemical fertilizer and manure compost. Soil samples were collected conducted and analyzed for SOC for soil. To estimate long-term variation patterns of SOC, DNDC was run with the experimental data and the weather input parameters from 1981 to 2010. DNDC simulation demonstrated SOC reduction by chemical fertilizer treatment unless plant residues are returned; whereas compost treatments increased SOC under the same conditions and SOC increment was proportional to compost application rate. In addition, SOC further increased under corn-barley cropping system over single corn cropping due to more compost application. Regardless of nutrient input type, residue return increased SOC; however, the magnitude of SOC increase by residue return was lower than by compost application.

Transport and Fate of Benzene in a Sandy Soil (사질토양에서의 Benzene의 이동성에 관한 연구)

  • 백두성;김동주
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.95-100
    • /
    • 1999
  • Hydrocarbon compounds in vadose zone soils caused by adsorption onto the surfaces of solid particles are generally considered to show retardation effect. In this study, we investigated the retardation effect on the transport of Benzene in a sandy soil by conducting batch and column tests. The batch test was conducted by equilibrating dry soil mass with Benzene solutions of various initial concentrations. and by analyzing the concentrations of Benzene in initial and equilibrated solutions using HPLC. The column test consisted of monitoring the concentrations of effluent versus time known as a breakthrough curve (BTC). We used KCl and Benzene solutions with the concentration of 10 g/L and 0.88 g/L as a tracer, and injected them into the inlet boundary of the soil sample as a square pulse type respectively, and monitored the effluent concentrations at the exit boundary under a steady state condition using an EC-meter and HPLC. From the batch test, we obtained a distribution coefficient assuming that a linear adsorption isotherm exists and calculated the retardation factor based on the bulk density and porosity of the column sample. We also predicted the column BTC curve using the retardation factor obtained from the distribution coefficient and compared with the measured BTC of Benzene. The results of the column test showed that i) the peak concentration of Benzene was much smaller than that of KCl and ⅱ) the travel times of peak concentrations for the two tracers were more or less identical. These results indicate that adsorption of Benzene onto the sand panicles occurred during the pulse propagation but the retardation of Benzene caused by adsorption was not present in the studied soil. Comparison of the predicted with the measured BTC of Benzene resulted in a poor agreement due to the absence of the retardation phenomenon. The only way to describe the absolute decrease of Benzene concentration in the column leaching experiment was to introduce a decay or sink coefficient in the convection-dispersion equation (CDE) model to account for an irreversible sorption of Benzene in the aqueous phase.

  • PDF

Morphological Classification of Unit Basin based on Soil & Geo-morphological Characteristics in the yeongsangang Basin (토양 및 지형학적 특성에 따른 영산강유역의 소유역 분류)

  • Sonn, Yeon-Kyu;Hyun, Byung-Keun;Jung, Suk-Jae;Hur, Seong-Oh;Jung, Kang-Ho;Seo, Myung-Chul;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.262-268
    • /
    • 2007
  • To characterize morphological classification of the basins, four major basin characteristics of the unit basins, including sinuosity, ratio of forest, ratio of flat area, and tributary existence were selected for cluster analysis. The analysis was carried out using soil map, topographic map, water course map, and basin map of the fifty unit basins in the Yeongsangang Basin. The unit basins could be categorized to five basin groups. The fitness by the Mantel test showed good fit of which r was 0.830. These grouping based on comprehensive soil and topographic characteristics provides best management practices, water quality management according to pollutants, increased water related model application and reasonable availability of water management. For agricultural management of water resources and conservation of water quality from agricultural non-point pollutants, therefore, comprehensive systematic classification of soil characteristics on unit basin might be an useful tool.

Effect of Relative Density on Lateral Load Capacity of a Cyclic Laterally Loaded Pile in Sandy Soil (모래지반의 상대밀도에 따른 횡방향 반복재하 시 말뚝의 극한지지력 평가)

  • Baek, Sung-Ha;Kim, Joon-Young;Lee, Seung-Hwan;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.4
    • /
    • pp.41-49
    • /
    • 2016
  • Pile foundations used as offshore support structures are dominantly subjected to cyclic lateral loads due to wind and waves. In this study, a series of cyclic lateral load tests were performed on a pre-installed aluminum flexible pile in sandy soil with three different relative densities (40%, 70% and 90%) in order to evaluate the effect of cyclic lateral loads on lateral load capacity of a pile. The cyclic lateral loads increased the lateral load capacity of a pile at 40% relative density, whereas they decreased it at 70% and 90% relative densities. This can be explained by the fact that the cyclic lateral loads slightly densified the surrounding soil in relatively loose sand (40%), while the surrounding soil was disturbed in relatively dense sand (70% and 90%). These effects were more obvious as the cyclic lateral load amplitude increased, being independent with the saturation. Also, from the test results, an empirical equation for the lateral load capacity of a cyclic laterally loaded pile in sandy soil was developed in terms of relative density of the soil and the cyclic lateral load amplitude.