• Title/Summary/Keyword: soil model

Search Result 4,496, Processing Time 0.028 seconds

Numerical Analysis on Behavior of Cantilever Retaining Walls (캔틸레버 옹벽의 거동에 대한 수치해석적 연구)

  • Jang, In-Seong;Jeong, Chung-Gi;Kim, Myeong-Mo
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.75-86
    • /
    • 1996
  • Current methods to estimate the earth pressure for retaining wall analysis are based on Rankine or Coulomb approaches, in which the soil mass behind wall is assumed to reach to failure state with sufficient lateral movements. Some of recent research works carried out by field measurements reveal that the active earth. pressures by Ranking or Coulomb method are underestimated. It means that the lateral movements of wall and soil would not be mobilized enough to reach the failure state. In this study, the finite element method with Drucker -Prager model for soil is employed to investigate the behavior of concrete cantile,tier retaining wall, together with the influence of inclined backfill. The results indicate that the earth pressures on the retaining wall are strongly related to the mobilized lateral movements of wall and soil and that Ranking and Coulomb methods underestimate the resultant earth pressures and the increasing effect on earth pressure by inclined backfill. Based on this study, a simplified method to determine to earth pressures on cantilever retaining wall with horizontal backfill is proposed.

  • PDF

Behavior of Geosynthetic Reinforced Wall with Heat Induce Drainage Method During Rainfall (열유도 토목섬유 배수공법이 적용된 보강토 옹벽의 강우시 거동 특성)

  • Shin, Seung-min;Sin, Chun-won;Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • This paper presents the results of a scale model test to the effect of heat exchanger drainage method in retaining wall of weathered granite soil. Purpose to rise in the temperature of the heat wires inside the weathered granite soil is preventing the collapse of the retaining wall and drainage smoothly moved to the drainage layer. Especially using a spray gun to simulate the rainfall since the rainfall drainage work is important for the rainfall effect on soil, find the difference about displacement of the retaining wall, change of volume water content, drainage, earth pressure and change in the strain of the geosynthetic was effected to heat exchanger within the soil. The result from applying the heat exchanger method decreased the earth pressure and displacement of the wall and increased drainage of water.

The Behavior of Piled Bridge Abutments Subjected to Lateral Soil Movements - Design Guidelines - (측방유동을 받는 교대말뚝기초의 거동분석 (II) - 측방유동 판정기준 -)

  • 이진형;서정주;정상섬;장범수
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.21-29
    • /
    • 2003
  • In this study, practical guidelines to check the possibility of some lateral movement of piled abutment were investigated. In these tests, both the depth of soft clay and the rate of embankment construction are chosen to examine the effect on lateral soil movements. The depth of soft clay layer varies from 5.2 m to 11.6 m, and the rate of embankment construction has two types : staged construction(1m/30days, 1m/15days) and instant construction. Various measuring instruments such as LVDTs, strain gauges, pressure cells, and pore pressure transducers are installed in designed positions in ordo. to clarify the soil - pile interaction and the short and long term behavior f3. piled bridge abutments adjacent to surcharge loads. The validity of the proposed guidelines by centrifuge test was compared with the observed performance by lateral movement index, F(Japan Highway Public Corporation) and modified I index(Korea Highway Corporation). Based on the results obtained, the critical values off and modified I, as a practical guidelines, are proposed as 0.03 and 2.0, respectively.

Behavior of Underground Flexible Pipes Subject to Vehicle Load (ll)-Based on Field Tests- (차량하중을 받는 지중연성관의 거동특성 (ll)-실증실험을 중심으로-)

  • 이대수;상현규;김경열;홍성연
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.49-58
    • /
    • 2003
  • Underground flexible pipes for electric cables are subject to external loads and surrounding soil pressure. Particularly, strain of flexible pipes is of great concern in terms of safety and maintenance for electric cables. In this paper, stress and strain of flexible pipes with various installation depth are compared using traditional formula, FEM analysis, model soil box test and field test. from the findings of various analyses, considering the strain criteria-maximum 3.5%, it is suggested that flexible pipes can be buried at the depth of 80cm without additional soil improvement.

Rheological Models for Describing Fine-laden Debris Flows: Grain-size Effect (세립토 위주의 토석류에 관한 유변학적 모델: 입자크기 효과)

  • Jeong, Sueng-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.6
    • /
    • pp.49-61
    • /
    • 2011
  • This paper presents the applicability of rheological models for describing fine-laden debris flows and analyzes the flow characteristics as a function of grain size. Two types of soil samples were used: (1) clayey soils - Mediterranean Sea clays and (2) silty soils - iron ore tailings from Newfoundland, Canada. Clayey soil samples show a typical shear thinning behavior but silty soil samples exhibit the transition from shear thinning to the Bingham fluid as shear rate is increased. It may be due to the fact that the determination of yield stress and plastic viscosity is strongly dependent upon interstructrual interaction and strength evolution between soil particles. So grain size effect produces different flow curves. For modeling debris flows that are mainly composed of fine-grained sediments (<0.075 mm), we need the yield stress and plastic viscosity to mimic the flow patterns like shape of deposition, thickness, length of debris flow, and so on. These values correlate with the liquidity index. Thus one can estimate the debris flow mobility if one can measure the physical properties.

Reuse of dredged sediments as pavement materials by cement kiln dust and lime treatment

  • Yoobanpot, Naphol;Jamsawang, Pitthaya;Krairan, Krissakorn;Jongpradist, Pornkasem;Horpibulsuk, Suksun
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.1005-1016
    • /
    • 2018
  • This paper presents an investigation on the properties of two types of cement kiln dust (CKD)-stabilized dredged sediments, silt and clay with a comparison to hydrated lime stabilization. Unconfined compressive strength (UCS) and California bearing ratio (CBR) tests were conducted to examine the optimal stabilizer content and classify the type of highway material. A strength development model of treated dredged sediments was performed. The influences of various stabilizer types and sediment types on UCS were interpreted with the aid of microstructural observations, including X-ray diffraction and scanning electron microscopy analysis. The results of the tests revealed that 6% of lime by dry weight can be suggested as optimal content for the improvement of clay and silt as selected materials. For CKD-stabilized sediment as soil cement subbase material, the use of 8% CKD was suggested as optimal content for clay, whereas 6% CKD was recommended for silt; the overall CBR value agreed with the UCS test. The reaction products calcium silicate hydrate and ettringite are the controlling mechanisms for the mechanical performance of CKD-stabilized sediments, whereas calcium aluminate hydrate is the control for lime-stabilized sediments. These results will contribute to the use of CKD as a sustainable and novel stabilizer for lime in highway material applications.

Carbon Storage in Aboveground, Root, and Soil of Pinus densiflora Stand in Six Different Sites, Korea

  • Park, Gwan-Soo;Choi, Jaeyong;Lee, Kyung-Hak;Son, Young-Mo;Kim, Rae-Hyun;Lee, Hang-Goo;Lee, Sang-Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • Due to the increase of carbon dioxide in the atmosphere and global warming, the importance of forest ecosystems, as a place of carbon accumulation and emission, has received a great amount of recognition lately. This study was performed to help understand and provide the current status of carbon cycle in the pinus densiflora stand, Korea. The samples were collected from average 35-years-old Pinus densifiora rands in Gongju, Youngdong, Chungsan, Muju, Mupung, and Jangsu regions. Total thirty aboveground sample trees were cut, and ten roots were sampled, and soil samples were collected. Average carbon concentrations in foliage, branch, stem bark, stem wood, and root were 55.7%, 56.0%, 56.0%, 57.3%, and 56.5%, respectively. Carbon content was estimated by the model $Wt=aD^b$ where Wt is oven-dry weight in kg and D is DBH in cm. Total carbon content (aboveground and root) was 42.39tonC/ha in the Pinus densiflora stand. The proportion of each tree component to total carbon content was high in order of stemwood, root, branch, stem bark, and foliage. Total net primary production (aboveground and root) was estimated at 6.51tonC/ha/yr in Pinus densiflora stand. The proportion of each tree component to total net primary carbon content was high in order of sternwood, root, branch, foliage and stembark. Soil carbon contents in the study sites was 43.51tonC/ha at 0-50cm soil depth.

Determination of Methoxyfenozide Residues in Water and Soil by Liquid Chromatography: Evaluation of its Environmental Fate Under Laboratory Conditions

  • Choi, Jeong-Heui;Mamun, M.I.R.;Shin, Eun-Ho;Kim, Hee-Kwon;El-Aty, A.M. Abd;Shim, Jae-Han
    • Toxicological Research
    • /
    • v.24 no.3
    • /
    • pp.207-212
    • /
    • 2008
  • Pesticide residues play several key roles as environmental and food pollutants and it is crucial to develop a method for the rapid determination of pesticide residues in environments. In this study, a simple, effective, and sensitive method has been developed for the quantitative analysis of methoxyfenozide in water and soil when kept under laboratory conditions. The content of methoxyfenozide in water and soil was analyzed by first purifying the compound through liquid-liquid extraction and partitioning followed by florisil gel filtration. Upon the completion of the purification step the residual levels were monitored through high performance liquid chromatography(HPLC) using a UV absorbance detector. The average recoveries of methoxyfenozide from three replicates spiked at two different concentrations and were ranged from 83.5% to 110.3% and from 98.1% to 102.8% in water and soil, respectively. The limits of detection(LODs) and limits of quantitation(LOQs) were 0.004 vs. 0.012 ppm and 0.008 vs. 0.024 ppm, respectively. The method was successfully applied to evaluate the behavioral fate of a 21% wettable powder(WP) methoxyfenozide throughout the course of 14 days. A first-order model was found to accurately fit the dissipation of methoxyfenozide in water with and a $DT_{50}$ value of 3.03 days was calculated from the fit. This result indicates that methoxyfenozide dissipates rapidly and does not accumulate in water.

System Identification Analysis on Soil-Structure Interaction Using Field Data (현장자료를 사용한 지반-구조물 상호작용에 대한 경험적 연구)

  • Kim Seung Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.37-46
    • /
    • 2005
  • In the field of earthquake engineering, recent improvements in many areas, such as seismological source modeling, analysis of travel path effects, and characterization of local site effects on strong shaking, have led to significant advances in both code-based and more advanced procedures for evaluating earthquake ground motions. A missing link, however, is empirically verified design procedures fur assessing the effects of soil-structure interaction (SSI). Available Soil-Structure Interaction (SSI) analysis techniques range from simple substructure-type procedures to relatively sophisticated finite element procedures. The most common substructure approach for foundation-soil interaction is to use a frequency-dependent and complex-valued impedance function. This study uniquely evaluates impedance functions for two well-instrumented sites w significant inertial SSI effects using a system Identification technique. The system identification analysis results are then compared to predictions from a simple theoretical model to gain insight into the inertial interaction effect in the subject sites.

On the prediction of unconfined compressive strength of silty soil stabilized with bottom ash, jute and steel fibers via artificial intelligence

  • Gullu, Hamza;Fedakar, Halil ibrahim
    • Geomechanics and Engineering
    • /
    • v.12 no.3
    • /
    • pp.441-464
    • /
    • 2017
  • The determination of the mixture parameters of stabilization has become a great concern in geotechnical applications. This paper presents an effort about the application of artificial intelligence (AI) techniques including radial basis neural network (RBNN), multi-layer perceptrons (MLP), generalized regression neural network (GRNN) and adaptive neuro-fuzzy inference system (ANFIS) in order to predict the unconfined compressive strength (UCS) of silty soil stabilized with bottom ash (BA), jute fiber (JF) and steel fiber (SF) under different freeze-thaw cycles (FTC). The dosages of the stabilizers and number of freeze-thaw cycles were employed as input (predictor) variables and the UCS values as output variable. For understanding the dominant parameter of the predictor variables on the UCS of stabilized soil, a sensitivity analysis has also been performed. The performance measures of root mean square error (RMSE), mean absolute error (MAE) and determination coefficient ($R^2$) were used for the evaluations of the prediction accuracy and applicability of the employed models. The results indicate that the predictions due to all AI techniques employed are significantly correlated with the measured UCS ($p{\leq}0.05$). They also perform better predictions than nonlinear regression (NLR) in terms of the performance measures. It is found from the model performances that RBNN approach within AI techniques yields the highest satisfactory results (RMSE = 55.4 kPa, MAE = 45.1 kPa, and $R^2=0.988$). The sensitivity analysis demonstrates that the JF inclusion within the input predictors is the most effective parameter on the UCS responses, followed by FTC.