• Title/Summary/Keyword: soil model

Search Result 4,496, Processing Time 0.038 seconds

Behavior of Soil-Reinforced Segmental Retaining Walls Subjected to Earthquake Loading (보강토 옹벽의 지진시 거동)

  • 유충식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.379-386
    • /
    • 2000
  • This paper presents the results of finite element analysis on the seismic response of a soil-reinforced segmental retaining wall subjected to a prescribed earthquake record. The results of finite element analysis indicate that the maximum wall displacement occurs at the top, exhibiting a cantilever type of wall movement. Also revealed is that the increase in reinforcement force is more pronounced in the upper part of the reinforced zone, resulting in a more or less uniform distribution. None of the design guidelines appears to be able to correctly predict the dynamic force increase when compared with the results of finite element analysis. The calculation model adopted by the NCMA guideline, however, appears to compare better with the results of finite element analysis as well as field survey than the FHWA guideline. Based on the findings from this study, a number of implications to the current design methods are discussed.

  • PDF

Ultimate Uplift Capacity of Circular Anchors in Layered Soil

  • Shin, Eun-Chul;Das, Braja-M
    • Geotechnical Engineering
    • /
    • v.14 no.3
    • /
    • pp.63-72
    • /
    • 1998
  • Laboratory model test results for ultimate uplift capacity of horizontal circular anchors embedded in soft clay overlain by dense sand are presented. The effect of the critical embedment ratio on the thickness of the clay layer was evalyated. An approximate preocedure for estimating the net ultimate capacity is presented.

  • PDF

A Study on Bearing Capacity according to the Number of Reinforcement Layers in Sandy Ground Reinforced by Mats of Equal-intervals (등간격의 매트로 보강된 모래지반의 보강층수에 따른 지지력에 관한 연구)

  • 임종철;박성재;주인곤;이재열;이민희
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.201-217
    • /
    • 1999
  • Bearing capacity of soil can be improved by several conventional ground improvement techniques like stabilization and compaction. In recent time, the use of reinforced soil has become popular due to the availability of durable strong geosynthetic materials. In this papers, through the laboratory model tests on sandy ground reinforced by mats about the strip footing under plane strain condition, the effects of bearing capacity improvement and behaviour of sandy ground were observed. And bearing capacities calculated by proposed method and measured by tests were compared.

  • PDF

2-D Consolidation Numerical Analysis of Multi_Layered Soils (다층 지반의 2차원 압밀 수치해석)

  • 김팔규;류권일;남상규;이재식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.467-474
    • /
    • 2000
  • The application of Terzaghi's theory of consolidation for analysing the settlement of multi-layered soils is not strictly valid because the theory involves an assumption that the soil is homogeneous. The settlement of stratified soils with confined aquifer can be analysed using numerical techniques whereby the governing differential equation is replaced by 2-dimensional finite difference approximations. The problems of discontinuous layer interface are very important in the algorithm and programming for the analysis of multi-layered consolidation using a numerical analysis, finite difference method(F.D.M.). Better results can be obtained by the process for discontinuous layer interface, since it can help consolidation analysis to model the actual ground The purpose of this paper provides an efficient computer algorithm based on numerical analysis using finite difference method(F.D.M) which account for multi-layered soils with confined aquifer to determine the degree of consolidation and excess pore pressures relative to time and positions more realistically.

  • PDF

Three phase flow simulations using the fractional flow based approach with general initial and boundary conditions

  • Suk, Heejun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.88-91
    • /
    • 2004
  • The multiphase flow simulator, MPS, is developed based on the fractional flow approach considering tile fully three phase flow with general initial and boundary condition. Most existing fractional flow-based models are limited to two-phase flow and specific boundary conditions. Although there appears a number of three-phase flow models, they were mostly developed using pressure based approaches. As a result, these models require cumbersome variable-switch techniques to deal with phase appearance and disappearance. The use of fractional flow based approach in MPS makes it unnecessary to use variable-switch to handle the change of phase configurations. Also most existing fractional flow based models consider only specific boundary conditions. However, the present model considers general boundary conditions of most possible and plausible cases which consists of ten cases.

  • PDF

Evolution of reaction zones in reactive barriers consisting of calcite and glass beads

  • Jeong Gon, Kim;Gwang Man, Lee;Ik Hwan, Go
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.19-22
    • /
    • 2004
  • Two-dimensional modeling studies using TOUGHREACT were conducted to investigate the coupling between flow and transport developed as a consequence of differences in density, dissolution/ precipitation, and medium heterogeneity. The model includes equilibrium reactions for aqueous species, kinetic reactions between tile solid phases and aqueous constituents, and full coupling of porosity and permeability changes resulting from precipitation and dissolution reactions in porous media. Generally, the evolutions in the concentrations of the aqueous phase are intimately related to the reaction-front dynamics. Plugging of the medium contributed to significant transients in patterns of flow and mass transport.

  • PDF

Remediation of groundwater contaminated with hydrophobic organic compounds using biobarrier (소수성 유기오염물질로 오염된 지하수의 Biobarrier에 의한 복원)

  • 김영규;신원식;김영훈;송동의
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.114-117
    • /
    • 2002
  • Sorption and desorption studies were conducted to evaluate several media as a potential biobarrier for the remediation of groundwater contaminated with hydrophobic organic compounds (HOCs). Pahokee and Bion peats, Devonian Ohio shale, vermicompost, and 50% HDTMA-montmorillonite were used as model sorbents. Sorption and desorption isotherms were determined using the radiolabeled phenanthrene (Phe). Sorption capacity of Phe on several sorbents was in the order Ohio shale > 50% HDTMA-montmorillonite > vermicompost > Pahokee peat. Mineralization kinetics was investigated for Phe-sorbed sorbents using Pseudomonas putida 17484. Among the tested sorbents, active biodegradation of Phe was observed in shale and vermicompost: degradation in shale exhibited little lag time while that in shale showed a significant lag time. Results of this study indicate that sorbents used in this work can be utilized as permeable reactive biobarrier media for the remediation of HOC-contaminated groundwater.

  • PDF

시멘트/슬래그/Fe(II) 시스템에 의한 NAPL TCE의 분해 특성

  • 박정현;강완협;황인성;박주양
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.218-222
    • /
    • 2004
  • Batch slurry experiments were conducted to develop cement/slag/Fe(II) system that could treat hazardous liquid wastes containing halogenated organic solvents. Portland cement in combination with Fe(II) was reported to reductively dechlorinate chlorinated organics in a modified solidification/stabilization process. TCE (trichloroethylene) was used a model halogenated organic solvent. The objectives of this study were to assess the feasibility of using cement and steel converter slag amended with Fe(II) as a low cost abiotic reductive dechlorination and to investigate the kinetics of TCE dechlorination over a wide range of TCE concentration. From the result of screening experiments, cement/slag/Fe(II) system was identified as a potentially effective system to treat halogenated organic solvent. Kinetic studies were carried out to further investigate degradation reaction of TCE NAPL (Non Aqueous Phase Liquids) in cement/slag/Fe(II) systems by using batch slurry reactors. Degradation rate of TCE solution in this system can be explained by pseudo-first-order rate law because the prediction with the rate law is in good agreement with the observed data.

  • PDF

Surface characteristics of TiO$_2$ in the Alcohol-Water Cosolvent System

  • Yoon, Sun-Hee;Shin, Yong-Il;Park, Sang-Won
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.112-115
    • /
    • 2000
  • Surface complex models(SCMs)은 최근 흡착모델링에 대한 관심사가 부각되면서 수질(표면수, 지하수)오염에 대한 영향을 예측하고 흡착결과를 파악하는데 많은 주목을 받고 있다. SCMs의 흡착모델의 하나인 diffuse double layer model(DDLM)은 특정조건에서 Gouy-Chapman 이론을 바탕으로 설명하고 있지만, 실제와는 상당한 차이를 보인다. 따라서 본 논문은 기존의 자료를 바탕으로 TiO$_2$/용매(수용액/ 물-에탄올(1:1))간의 거리를 추정해 감에 따라, 각 실험적 변수에 따른 electrical double layer(EDL)의 흡착형태의 변화를 알아보았다. 또한, cosolvent가 존재할때, 흡착모델 형태의 변화와 흡착결과에 대한 영향에 대해 알아보았다.

  • PDF

Analysis of Hydrological Impact for Long-term Land Cover Change using WMS HEC-l Model in Anseong-Cheon Watershed (WMS HEC-1을 이용한 안성천 유역의 경년 수문 변화 분석)

  • Park, Geun-Ae;Kim, Seong-Joon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.293-296
    • /
    • 2002
  • The purpose of this study is to evaluate the hydrological impact due to temporal land cover change urbanization of Anseong-cheon watershed $(585.09km^2)$. WMS (Watershed Modeling System) HEC-1 was adopted, and burned DEM with $200{\times}200m$ resolution and soil map reclassified by hydrologic soil groups were prepared. Land cover for 1985, 1990, 1995 and 2000 were classified by maximum likelihood method, using Landsat MSS and TM imageries. Calibration and verification of HEC-1 were conducted using 4 storm events. Peak flow at Pyeong taek station increased $25.9m^3/sec$ during the past 15 years due to paddy and forest decrease. Streamflow impact by just paddy area decrease and forest area decrease were also analysed keeping watershed CN values unchanged of the given year, respectively.

  • PDF