• Title/Summary/Keyword: soil model

Search Result 4,496, Processing Time 0.026 seconds

Stabilization of Hydrogen Peroxide using Malonic Acid in Fenton and Fenton-like reactions (펜톤 및 펜톤 유사반응에서 말론산을 이용한 과산화수소의 안정화)

  • Kim, Jee-Eun;Ha, Tae-Wook;Kim, Young-Hun
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.7
    • /
    • pp.25-31
    • /
    • 2013
  • Hydrogen peroxide takes much of the cost for Fenton reaction applied for treatment of organic contaminants. Therefore, the effective use of hydrogen peroxide makes the technology more cost effective. The effective use of hydrogen peroxide is especially needed in the soil and groundwater remediation where complete mixing is not possible and it takes a long time for reactive species to transport to the fixed target compounds. Stabilization ability for hydrogen peroxide of malonic acid was evaluated in Fenton and Fenton-like reactions in this study. Malonic acid contributes on the stabilization of hydrogen peroxide by weak interaction between iron and the stabilizer and inhibiting the catalytic role of iron. The stabilization effect increased as the solution pH decrease below the $pK_{a1}$. The stabilization effect increased as the concentration of malonic acid increased and the effect was maximized at the malonic acid concentration of about ten times higher than the iron concentration. The model organic contaminant was successfully oxidized in the presence of the stabilizer but the degradation rate was slower than the system without the stabilizer. The stabilization effect was also proved in a Fenton-like reaction where magnetite and hematite were used instead of soluble iron species.

Mechanical Properties of Soil under Repeated Load (반복하중(反復荷重)을 받는 흙의 역학적(力學的) 특성(特性))

  • Chun, Byung Sik;Park, Heung Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.113-122
    • /
    • 1990
  • In case of repeated wheel-loads are acted on subbase course material, field test is generally executed to get the design standard, but the study shows dynamic properties of soils especially under repeated loads, which have not been well known to us. We try not only to obtain yield stress and elastic modulus of soil in terms of rheological model interpretation but also to investigate the influence of the repeated loads. Yield stress of soil induces hardening until approaching critical value along with the increase in number of cycle, whereas the change in modulus of elasticity with respect to the number of cycle greatly depends on the strength of repeated stress, if weak in strength of repeated stress, the modulus of elasticity increases along with the number of cycle, while if strong, it tends to decrease.

  • PDF

Optimization of operating parameters to remove and recover crude oil from contaminated soil using subcritical water extraction process

  • Taki, Golam;Islam, Mohammad Nazrul;Park, Seong-Jae;Park, Jeong-Hun
    • Environmental Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.175-180
    • /
    • 2018
  • Box-Behnken Design (BBD) under response surface methodology (RSM) was implemented to optimization the operating parameters and assess the removal and recovery efficiencies of crude oil from contaminated soil using subcritical water extraction. The effects of temperature, extraction time and water flow rate were explored, and the results indicate that temperature has a great impact on crude oil removal and recovery. The correlation coefficients for oil removal ($R^2=0.74$) and recovery ($R^2=0.98$) suggest that the proposed quadratic model is useful. When setting the target removal and recovery (>99%), BBD-RSM determined the optimum condition to be a temperature of $250^{\circ}C$, extraction time of 120 min, and water flow rate of 1 mL/min. An experiment was carried out to confirm the results, with removal and recovery efficiencies of 99.69% and 87.33%, respectively. This result indicates that BBD is a suitable method to optimize the process variables for crude oil removal and recovery from contaminated soil.

Effect of near field earthquake on the monuments adjacent to underground tunnels using hybrid FEA-ANN technique

  • Jafarnia, Mohsen;Varzaghani, Mehdi Imani
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.757-768
    • /
    • 2016
  • In the past decades, effect of near field earthquake on the historical monuments has attracted the attention of researchers. So, many analyses in this regard have been presented. Tunnels as vital arteries play an important role in management after the earthquake crisis. However, digging tunnels and seismic effects of earthquake on the historical monuments have always been a challenge between engineers and historical supporters. So, in a case study, effect of near field earthquake on the historical monument was investigated. For this research, Finite Element Analysis (FEM) in soil environment and soil-structure interaction was used. In Plaxis 2D software, different accelerograms of near field earthquake were applied to the geometric definition. Analysis validations were performed based on the previous numerical studies. Creating a nonlinear relationship with space parameter, time, angular and numerical model outputs was of practical and critical importance. Hence, artificial Neural Network (ANN) was used and two linear layers and Tansig function were considered. Accuracy of the results was approved by the appropriate statistical test. Results of the study showed that buildings near and far from the tunnel had a special seismic behavior. Scattering of seismic waves on the underground tunnels on the adjacent buildings was influenced by their distance from the tunnel. Finally, a static test expressed optimal convergence of neural network and Plaxis.

An Experimental Study about Tractive Performance of Tracked Vehicle on Deep-sea Soft Sediment Based on Design of Experiment Using Orthogonal Array (직교배열표 실험계획법에 의한 심해 연약지반용 무한궤도차량의 견인성능에 대한 실험적 연구)

  • Choi, Jong-Su;Hong, Sup;Kim, Hyung-Woo;Lee, Tae-Hee
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.333-339
    • /
    • 2004
  • This paper is concerned with an experimental investigation about tractive performance of a tracked vehicle on extremely soft soil. A tracked vehicle model with principal dimensions of $0.9\;m(L)\;{\times}\;0.75\;m(B)\;{\times}\;0.4\;m(H)$ and the weight of 167 kg was constructed with a pair of driving chain links driven by two AC-servo motors. The tracks are configured with detachable grousers with variable span. Deep seabed was simulated by means of bentonite-water mixture in a soil bin of $6.0\;m(L)\;{\times}\;3.7\;m(B)\;{\times}\;0.7\;m(H)$. Slip of vehicle and driving torque of motor were measured with respect to experimental variables; grouser span, grouser chevron angle, driving speed, drawbar-pull weight, position of center-of-gravity and weight. $L_8$ orthogonal array is adopted for DOE (Design Of Experiment). The effects of experiment variables on traction performance are evaluated.

APPLICATION AND CROSS-VALIDATION OF SPATIAL LOGISTIC MULTIPLE REGRESSION FOR LANDSLIDE SUSCEPTIBILITY ANALYSIS

  • LEE SARO
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.302-305
    • /
    • 2004
  • The aim of this study is to apply and crossvalidate a spatial logistic multiple-regression model at Boun, Korea, using a Geographic Information System (GIS). Landslide locations in the Boun area were identified by interpretation of aerial photographs and field surveys. Maps of the topography, soil type, forest cover, geology, and land-use were constructed from a spatial database. The factors that influence landslide occurrence, such as slope, aspect, and curvature of topography, were calculated from the topographic database. Texture, material, drainage, and effective soil thickness were extracted from the soil database, and type, diameter, and density of forest were extracted from the forest database. Lithology was extracted from the geological database and land-use was classified from the Landsat TM image satellite image. Landslide susceptibility was analyzed using landslide-occurrence factors by logistic multiple-regression methods. For validation and cross-validation, the result of the analysis was applied both to the study area, Boun, and another area, Youngin, Korea. The validation and cross-validation results showed satisfactory agreement between the susceptibility map and the existing data with respect to landslide locations. The GIS was used to analyze the vast amount of data efficiently, and statistical programs were used to maintain specificity and accuracy.

  • PDF

HYLGS 모델을 활용한 수도권 매립지에서의 침출수-가스의 동시유동 해석에 관한 연구

  • 이광희;박용찬;성원모
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.225-231
    • /
    • 1998
  • Open dump causes groundwater and soil contamination by leachate, air pollution by LFG (Landfill Gas). In this paper, in order to improve landfill researches which have been done about reduction of high leachate level and LFG collection in the Kimpo landfill separately, the effect of simultaneous flowing of leachate and LFG has been Studied. The HYLGS (Hanyang Leachate Gas Simulator) used in this study is a 3D, 2-phase, transient FDM model which can be applied to venting trenches in a landfill. From present numerical analysis it can be concluded that all the pressures of the Kimpo landfill grid system are almost the same and their maximum value in the center grid block of the system is approximately 26 m $H_2O$ (2.52 atm), that because the pressures of venting trench layer situated in the middle of the landfill have the lowest values and equal with air pressure, the venting trenches play an important role in landfill stabilization, that the flow of gas will be more difficult as time goes by owing to the increase of LGR(Leachate and gas ratio).

  • PDF

Effects of Fracture Intersection Characteristics on Transport in Three-Dimensional Fracture Networks

  • Park, Young-Jin;Lee, Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.27-30
    • /
    • 2001
  • Flow and transport at fracture intersections, and their effects on network scale transport, are investigated in three-dimensional random fracture networks. Fracture intersection mixing rules complete mixing and streamline routing are defined in terms of fluxes normal to the intersection line between two fractures. By analyzing flow statistics and particle transfer probabilities distributed along fracture intersections, it is shown that for various network structures with power law size distributions of fractures, the choice of intersection mixing rule makes comparatively little difference in the overall simulated solute migration patterns. The occurrence and effects of local flows around an intersection (local flow cells) are emphasized. Transport simulations at fracture intersections indicate that local flow circulations can arise from variability within the hydraulic head distribution along intersections, and from the internal no flow condition along fracture boundaries. These local flow cells act as an effective mechanism to enhance the nondiffusive breakthrough tailing often observed in discrete fracture networks. It is shown that such non-Fickian (anomalous) solute transport can be accounted for by considering only advective transport, in the framework of a continuous time random walk model. To clarify the effect of forest environmental changes (forest type difference and clearcut) on water storage capacity in soil and stream flow, watershed had been investigated.

  • PDF

A Study on Soil Improvement by Using High Pressure Grouting (고압분사공법에 의한 지반개량에 관한 연구)

  • Yoo, Jang-Heun;Cho, Nam-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.998-1004
    • /
    • 2005
  • U.J.S.(Ultra Jetting System) is a new ground improvement method registered as a Utility Model No.0205798, which has fundamentally improved the existing jetting method of J.S.P.(Jumbo Special Pattern System). In this study, the uniaxial compressive strengths of improved soil-grout structures by U.J.S. and J.S.P. which have been conducted on the construction site are compared. Also, the differences between the U.J.S. and J.S.P. are analyzed by considering the role of the auger bit, the injection distance measured from the axis of boring tubes, and angle of injection measured from the horizontal. The specimens of soil-grout structures are taken from the improved soils by using the U.J.S. and J.S.P. The uniaxial tests for the samples are conducted after the curing period of 28 days. The uniaxial compressive strengths and the coefficients of elasticity of surface and distance from the axis of boring. This study shows that the mean strength of the improved structure by J.S.P. is 1.9 times greater than by J.S.P.

  • PDF

Lateral Earth Pressures Acting on Piles in Cohesion less Soil (모래지반(地盤)속의 말뚝에 작용(作用)하는 측방토압(側方土壓))

  • Hong, Won Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.63-69
    • /
    • 1983
  • A theoretical equation is presented to estimate the lateral earth pressures acting on piles in a row in cohesionless soil. Then, a series of model tests are carried out for various kinds of pile diameters and pile intervals, followed by very good agreements between the experimental and theoretical values of the lateral earth pressures on piles. The experimental results prove the validity of an assumption on the plastic condition of soil around piles set up in the theoretical derivation. And also the significance of the theoretical values by the presented theoretical equation is clarified.

  • PDF