• Title/Summary/Keyword: soil model

Search Result 4,495, Processing Time 0.033 seconds

Modelling of Soil Extraction Technique for Restoration of Building Tilt from Geotechnical Centrifuge Tests (원심모형실험을 통한 기울어진 건물의 기울기 교정에 이용되는 Soil Extraction 공법의 모델링)

  • Lee Cheol Ju;Ng C.W.W.
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.121-126
    • /
    • 2005
  • It is not uncommon to observe tilt of buildings and towers as a result of unexpected differential foundation settlements. Over the years, a number of engineering methods including the soil extraction technique have been attempted to reduce inclination of buildings and towers. In this research, a series of novel geotechnical centrifuge model tests by using a state-of-the-art in-flit robotic manipulator have been conducted to study key factors which govern the restoration of building tilts. In the centrifuge model tests, the robotic manipulator was used to drill and extract soil in-flight near an initially tilted model building. The soil extraction was to induce stress release, thereby mitigating the inclination of the model building. Insights into the effects of different configurations, soil density and sequences of drilling observed during the centrifuge model tests on the restoration of the model building are to be investigated.

Characteristics of the Strength Change of Dredged Soil by Tide Influence (조석 영향에 의한 해성준설토의 강도변화 특성에 관한 연구)

  • Chun, Byung-Sik;Kim, Bong-Su;Lee, Won-Taek;Do, Jong-Nam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1071-1074
    • /
    • 2008
  • In this study, the behavior of dredged soil was measured by repeated tide and analyzed the change of settlements and cone penetration resistance by centrifuge model about dredged soil of Kunsan-Janghang site that maximum tidal range is 7.4m. Consequently the settlements of dredged soil by repeated tide in the 2nd month was 0.489 m. After 12th month, the total settlements was 0.524 m in the model. It meaned the settlements of dredged soil by repeated tide in the 2th month was 80% of the settlements. Also, with the lapse of time, cone penetration resistance increased centrifuge model test for catching the strength change of dredged soil by repeated tide. After 10th month, there were not almost changes. cone penetration resistance in 10th month was measured more 3.5~5.6 times than that in its early stages. Also, with the lapse of time, cone penetration resistance increased almost linearly. And, when we surveyed the relation between cone penetration resistance and time, as depth increased, cone penetration resistance rose.

  • PDF

A Study on the Bucket Loading Characteristics for Wheel-loader Loading Automation (휠로더 굴착 자동화를 위한 버킷 부하특성 연구)

  • Seo, Dong-Kwan;Seo, Hyun-Jae;Kang, In-Pil;Kwon, Young-Min;Lee, Sang-Hoon;Hwang, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1332-1340
    • /
    • 2009
  • The front end wheel loader is widely used for the loading of materials in mining and construction fields. It has repetitive digging, loading and dumping procedures. The bucket is subjected to large resistance force from the soil during scooping. We considered the soil reaction force characteristics from scooping procedure, the protection by overload and automatic scooping mode algorithm. The main topic of this paper is the analysis of the soil reaction force characteristics. The analysis of soil mechanics is carried out and the developed soil model is verified by experimental results from the simplified experimental equipment. A simplified model of the soil shape and bucket trajectory is used to determine the scooping direction based on an estimation of the resistance force applied on the bucket during the scooping motion. In the future, this model will be used for the generation of an appropriate path for the wheel loader automation.

Research with Statistical Model to Analyze Efficiency of Heavy Metal Soil Washing (통계학적 모델을 이용한 중금속 토양 세척의 효율 분석에 관한 연구)

  • Oh, Sangyoung;Yoo, Jongchan;Baek, Kitae;Kim, Hanseung;Park, Jaewoo
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.1
    • /
    • pp.14-24
    • /
    • 2018
  • In soil washing, there are many variables including types of reagent and contaminant, washing time, soil-liquid ratio, washing cycles, washing agent concentrations, and etc. To identify the most influencing factors on soil washing process, regression analysis was performed for eight single variables and five combined variables. A quantitative model that employs W/H (molar ratio of washing agent to heavy metal) as a major variable was established based on the regression. The validity of the model was demonstrated by conducting lab experiments with Cu, Pb, Zn, Ni and As-contaminated soils, and various washing reagents including acetic acid, citric acid, malic acid, oxalic acid, ethylenediamine tetraacetic acid (EDTA) and nitriloacetic acid (NTA). The washing efficiencies were compared with the EDTA washing data reported in the literature. The correlation between W/H and removal efficiency was analyzed after dividing data into two groups according to the heavy metal mobility.

Stochastic Behavior of Plant Water Stress Index and the Impact of Climate Change (식생 물 부족 지수의 추계학적 거동과 기후변화가 그에 미치는 영향)

  • Han, Suhee;Yoo, Gayoung;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.507-514
    • /
    • 2009
  • In this study, a dynamic modeling scheme is presented to describe the probabilistic structure of soil water and plant water stress index under stochastic precipitation conditions. The proposed model has the form of the Fokker-Planck equation, and its applicability as a model for the probabilistic evolution of the soil water and plant water stress index is investigated under a climate change scenario. The simulation results of soil water confirm that the proposed soil water model can properly reproduce the observations and show that the soil water behaves with consistent cycle based on the precipitation pattern. The simulation results of plant water stress index show two different PDF patterns according to the precipitation. The simple impact assessment of climate change to soil water and plant water stress is discussed with Korean Meteorological Administration regional climate model.

GRID-BASED SOIL-WATER EROSION AND DEPOSITION MODELING USING GIS AND RS

  • Kim, Seong-Joon
    • Water Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.49-61
    • /
    • 2001
  • A grid-based KIneMatic wave soil-water EROsion and deposition Model(KIMEROM) that predicts temporal variation and spatial distribution of sediment transport in a watershed was developed. This model uses ASCII-formatted map data supported from the regular gridded map of GRASS (U.S. Army CERL, 1993)-GIS(Geographic Information Systems), and generates the distributed results by ASCII-formatted map data. For hydrologic process, the kinematic wave equation and Darcy equation were used to simulated surface and subsurface flow, respectively (Kim, 1998; Kim et al., 1998). For soil erosion process, the physically-based soil erosion concept by Rose and Hairsine (1988) was used to simulate soil-water erosion and deposition. The model adopts single overland flowpath algorithm and simulates surface and subsurface water depth, and sediment concentration at each grid element for a given time increment. The model was tested to a 162.3 $\textrm{km}^2$ watershed located in the tideland reclaimed ares of South Korea. After the hydrologic calibration for two storm events in 1999, the results of sediment transport were presented for the same storm events. The results of temporal variation and spatial distribution of overland flow and sediment areas are shown using GRASS.

  • PDF

Evaluation of Measured Seismic Responses of the Hualien LSST Model Structure (화련 대형내진시험모델의 계측지진응답 평가)

  • 현창헌
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.249-256
    • /
    • 1997
  • This paper deals with the prediction and the evaluation of the measured seismic responses of the Hualien large-scale seismic test soil-structure system. The predicted analysis was carried out for the model structure by the computer code SASSI utilizing soil properties derived from geotechnical investigations and correlation analysis of recorded earthquake responses of soil. Utilizing the soil properties, seismic responses were predicted and compared with measured ones. The nonlinear effects of soil on structural responses were also evaluated.

  • PDF

Estimating the Soil Carbon Stocks for a Pinus densiflora Forest Using the Soil Carbon Model, Yasso

  • Lee, Ah-Reum;Noh, Nam-Jin;Cho, Yong-Sung;Lee, Woo-Kyun;Son, Yo-Whan
    • Journal of Ecology and Environment
    • /
    • v.32 no.1
    • /
    • pp.47-53
    • /
    • 2009
  • The soil carbon stock for a Pinus densiflora forest at Gwangneung, central Korea was estimated using the soil carbon model, Yasso. The soil carbon stock measured in the forest was 43.73 t C $ha^{-1}$, and the simulated initial (steady state) soil carbon stock and the simulated current soil carbon stock in 2007 were 39.19 t C $ha^{-1}$ and 38.90 t C $ha^{-1}$, respectively. Under the assumption of a $0.1^{\circ}C$ increase in mean annual temperature per year, the decomposition and litter fractionation rates increased from 0.28 to 0.56 % $year^{-1}$ and the soil carbon stock decreased from 0.03 to 0.12 % $year^{-1}$. Yasso is a simple and general model that can be applied in cases where there is insufficient input information. However, in order to obtain more accurate estimates in Korea, parameters need to be recalibrated under Korean climatic and vegetation conditions. In addition, the Yasso model needs to be linked to other models to generate better litter input data.

Estimation of Spatial Distribution of Soil Moisture at Yongdam Dam Watershed Using Artificial Neural Networks (인공신경망을 이용한 용담댐 유역 공간 토양수분 분포도 산정)

  • Park, Jung-A;Kim, Gwang-Seob
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.3
    • /
    • pp.319-330
    • /
    • 2011
  • In this study, a soil moisture estimation model was proposed using the ground observation data of soil moisture, precipitation, surface temperature, MODIS NDVI and artificial neural networks. The model was calibrated and verified on the Yongdam dam watershed which has reliable ground soil moisture networks. The test statistics of calibration sites, Jucheon, Bugui, Sangjeon, showed that the correlation coefficients between observations and estimations are about 0.9353 and RMSE is about 1.4957%. Also that of the verification site, Cheoncheon2, showed that the correlation coefficient is about 0.8215 and RMSE is about 4.2077%. The soil moisture estimation model was applied to estimate the spatial distribution of soil moisture in the Yongdam dam watershed and results showed improved spatial soil moisture distribution since the model used satellite information of NDVI and artificial neural networks which can represent the nonlinear relationships between data well. The model should be useful to estimate wide range soil moisture information.

Model tests for the inhibition effects of cohesive non-swelling soil layer on expansive soil

  • Lu, Zheng;Tang, Chuxuan;Yao, Hailin;She, Jianbo;Cheng, Ming;Qiu, Yu;Zhao, Yang
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.91-97
    • /
    • 2022
  • The cohesive non-swelling soil (CNS) cushion technology has been widely applied in the subgrade and slope improvement at expansive soil regions. However, the mechanism of the inhibition effect of the CNS layer on expansive soil (ES) has not been fully understood. We performed four outdoor model tests to further understand the inhibition effect, including different kinds of upper layer and thickness, under the unidirectional seepage condition. The swelling deformation, soil pressure, and electrical resistivity were constantly monitored during the saturation process. It is found that when a CNS layer covered the ES layer, the swelling deformation and electrical resistivity of the ES layer decreased significantly, especially the upper part. The inhibition effect of the CNS layer increases with the increase of CNS thickness. The distribution of vertical and lateral soil pressure also changed with the covering of a CNS layer. The electrical resistivity can be an effective index to describe the swelling deformation of ES layer and analyze the inhibition effect of the CNS layer. Overall, the CNS deadweight and the ion migration are the major factors that inhibit the swelling deformation of expansive soil.