• Title/Summary/Keyword: soil microbial

Search Result 1,147, Processing Time 0.028 seconds

Impact of Herbicide Oxadiazon on Microbial Activity and Nitrogen Dynamics in Soil Environment

  • Rahman, Md. Mokhlesur;Song, Kyung-Sik;Rhee, In-Koo;Kim, Jang-Eok
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.187-192
    • /
    • 2005
  • Influence of herbicide oxadiazon on soil microbial activity and nitrogen dynamics was evaluated. Soil samples were treated with oxadiazon at field and tenfold field rates and incubated. Organic amendment was added as an additional substrate for soil microorganisms. Tenfold field rate oxadiazon stimulated substrate-induced respiration (SIR) and dehydrogenase activity (DHA) in amended soil as compared to unamended soil and control treatment. Soil urease activity was not affected by oxadiazon treatment. In both amended and unamended soils, treatment of the herbicide at higher rate had not significant influence on $NH_4$-N and $NO_3$-N concentrations. Higher dose of oxadiazon was degraded in both soils, but dissipation rate in amended soil was higher than unamended soil, with half-lives ($t_{1/2}$) of 23.1 and 138.6 days, respectively. Recommended field rate did not affect microbial activity and nitrogen dynamics in soil ecosystem. Results showed influence of oxadiazon on cycling processes of nitrogen in soil was not significant however its effect on microbial activity was a tendency depending on addition of organic amendment to soil.

Short-term Effects of Cultivars and Compost on Soil Microbial Activities and Diversities in Red Pepper Field (토양 미생물 활성과 다양성에 미치는 고추 품종과 퇴비의 단기적 효과)

  • Park, Kee-Choon;Kwon, Tae-Ryong;Jang, Kil-Soo;Kim, Yeong-Suk
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.2
    • /
    • pp.139-144
    • /
    • 2008
  • A field experiment was conducted to investigate the influence of cultivars and compost on soil microbial activities and diversities in a red pepper-grown field. Compost was applied with 0, 30, and 60M/T $ha^{-1}$ in April and then red pepper seedlings of "Yong-go 4" and "Koeun" were transplanted in May 2007. Soil samples were collected in early August 2007. Measurement of microbial activities was based on a dehydrogenase assay and a fluorescein diacetate hydrolysis. Soil microbial community was characterized with Biolog $EcoPlate^{TM}$ and phospholipid fatty acid(PLFA). Red pepper cultivars did not differentiate the selected soil chemical and microbial properties. Soil pH and soil microbial community changed by amending the soil with 30 and 60 M/T $ha^{-1}$ of compost, and the soil organic matter and potassium content, and soil microbial activities increased in soils amended with 60 M/T $ha^{-1}$ of compost. Red pepper cultivar induced a little different soil chemical properties and microbial activity in soils amended with 60 M/T $ha^{-1}$ of compost even though significant differences were not found in those properties. In conclusion the effects of compost on soil chemical and microbial properties were much higher than red pepper cultivars in short-term period but the effects of red pepper cultivars should be investigated in long-term field test.

Chemical and Biological Indicators of Soil Quality in Conventional and Organic Farming Apple Orchards

  • Lee, Yoon-Jung;Chung, Jong-Bae
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.2
    • /
    • pp.88-96
    • /
    • 2007
  • Organic farming systems based on ecological concepts have the potential to produce sustainable crop yields with no decline in soil and environmental qualities. Recent expansion of sustainable agricultural systems, including organic farming, has brought about need for development of sustainable farming systems based on value judgments for key properties of importance for farming. Chemical and microbiological properties were chosen as indicators of soil quality and measured at soil depth intervals of 5-20 and 20-35 cm in conventional and organic-based apple orchards located in Yeongchun, Gyeongbuk. The orchards were two adjacent fields to ensure the same pedological conditions except management system. Soil pH in organic farming was around 7.5, whereas below 6.0 in conventional farming. Organic farming resulted in significant increases in organic matter and Kjeldahl-N contents compared to those found with conventional management. Microbial populations, biomass C, and enzyme activities (except acid phosphatase) in apple orchard soil of organic farming were higher than those found in conventional farming. Higher microbial quotient ($C_{mic}/C_{org}$ ratio) and lower microbial metabolic quotient for $CO_2(qCO_2)$ in organic farming confirmed that organic farming better conserves soil organic carbon. Biological soil quality indicators showed significant positive correlations with soil organic matter content. These results indicate organic-based farming positively affected soil organic matter content, thus improving soil chemical and biological qualities.

Characteristics of Microbial Community Enzyme Activity and Substrate Availability of Damaged Soil (훼손 토양의 미생물군집 효소 활성과 기질 이용성 특성)

  • Ji Seul Kim;Gyo-Cheol Jeong;Myoung Hyeon Cho;Eun Young Lee
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.5
    • /
    • pp.68-77
    • /
    • 2023
  • The effect of soil damage on the physicochemical characteristics and activity of the soil microbial community is not well known. This study investigates this relationship by analyzing 11 soil samples collected from various points of soil damage across Gyeonggi-do. Soil damage resulted from forest fires, landslides, and development areas, with their impacts most severe on the topsoil layer (0-30 cm). Dehydrogenase and β-glucosidase activities were notably higher at locations damaged by forest fires compared to other sites. While enzyme activities in soils influenced by landslides and development areas were relatively low, sites with a pollution history exhibited elevated dehydrogenase activity, likely due to past microbial response to the pollution. Additionally, an assessment of carbon substrate usability by soil microorganisms indicated higher substrate availability in areas impacted by forest fires, contrasting with lower availability in landslide and development sites. Statistical analysis revealed a positive correlation between organic content of sand and clay and microbial activity. These findings provide valuable insights into soil damage and associated restoration research, as well as management strategies.

Application of Amplicon Pyrosequencing in Soil Microbial Ecology (토양미생물 생태 연구를 위한 증폭 파이로시퀀싱 기법의 응용)

  • Ahn, Jae-Hyung;Kim, Byung-Yong;Kim, Dae-Hoon;Song, Jaekyeong;Weon, Hang-Yeon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1073-1085
    • /
    • 2012
  • Soil microbial communities are immensely diverse and complex with respect to species richness and community size. These communities play essential roles in agricultural soil because they are responsible for most of the nutrient cycles in the soil and influence the plant diversity and productivity. However, the majority of these microbes remain uncharacterized because of poor culturability. Next-generation sequencing techniques have revolutionized many areas of biology by providing cheaper and faster alternatives to Sanger sequencing. Among them, amplicon pyrosequencing is a powerful tool developed by 454 Life Sciences for assessing the diversity of complex microbial communities by sequencing PCR products or amplicons. This review summarizes the current opinions in amplicon sequencing of soil microbial communities, and provides practical guidance and advice on sequence quality control, aligning, clustering, OTU- and taxon-based analysis. The last section of this article includes a few representative studies conducted using amplicon pyrosequencing.

Impacts of Soil Organic Matter on Microbial Community of Paddy Soils in Gyeongnam Province

  • Son, Daniel;Sonn, Yeon-Kyu;Weon, Hang-Yeon;Heo, Jae-Young;Kim, Dae-Ho;Choi, Yong-Jo;Lee, Sang-Dae;Ok, Yong Sik;Lee, Young Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.783-788
    • /
    • 2016
  • Agricultural management of paddy soil depends on the effects of soil microbial activities. The present study evaluated the soil microbial community of 25 paddy soils in Gyeongnam Province by fatty acid methyl ester (FAME). The average of microbial communities in paddy soils were 32.2% of total bacteria, 16.7% of Gram-negative bacteria, 12.9% of Gram-positive bacteria, 2.0% of actinomycetes, 14.9% of fungi, and 1.3% of arbuscular mycorrhizal fungi. The communities of total bacteria (34.9%) and Gram-negative bacteria (19.4%) in soils with $30{\sim}35g\;kg^{-1}$ of organic matter were significantly larger than those in soils with other organic matter levels. However, soils with $20{\sim}30g\;kg^{-1}$ of organic matter had significantly low ratio of cy17:0 to $16:1{\omega}7c$ and cy19:0 to $18:1{\omega}7c$ as compared with soils with $30{\sim}35g\;kg^{-1}$ of organic matter, indicating microbial stress decreased (p < 0.05). In principal component analyses of soil microbial communities, Gram-negative bacteria should be considered as a potential responsible factor for the obvious microbial community differentiation that was observed between the two different organic matter levels in paddy fields. Thus, soils containing $20{\sim}30g\;kg^{-1}$ of organic matter were responsible for strong effect on microbial biomass and stress in paddy fields.

Effect of microbial product made of Bacillus stearothermophilus DL-3 on microorganisms in soil and growth of lettuce and Chinese cabbage. (Bacillus stearothermophilus DL-3 미생물 제재의 처리가 토양 미생물상 및 상추와 배추의 생장에 미치는 영향)

  • 김순희;배계선;양재균;이유정;오주성;정순재;문병주;이진우
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.778-787
    • /
    • 2004
  • Effect of the microbial product made of Bacillus stearothermophilus DL-3, which was isolated from the soil and identified in this study, and rice bran on microorganisms in soil and growth of lettuce (Red skirt lettuce) and Chinese cabbage (Ga rack new No.1 Chinese cabbage) was investigated. Total numbers of microorganisms in the pot with untreated soil, treated with standard amount of microbial product and treated with double amounts of microbial product for growth of lettuce after 6 weeks were 2.78${\times}$10$^{7}$ CFU/g, 2.72${\times}$10$^{8}$ CFU/g and 3.63${\times}$10$^{8}$ CFU/g. Total numbers of microorganisms in the soil without treatment of microbial product and treated with standard amount of microbial product were 2.06${\times}$10$^{8}$ CFU/g and 5.49${\times}$10$^{8}$ CFU/g. Total numbers of microorganisms in the pot with untreated soil, treated with standard amount of microbial product and treated with double amounts of microbial product for growth of Chinse cabbage after 6 weeks were 1.43${\times}$10$^{7}$ CFU/g, 3.42${\times}$10$^{8}$ CFU/g and 7.22${\times}$10$^{8}$ CFU/g. Total numbers of microorganisms in the soil without treatment of microbial product and treated with standard amount of microbial product were 5.75${\times}$10$^{8}$ CFU/g and 7.96${\times}$10$^{8}$ CFU/g. On basis of leaf length, leaf width, leaf number, wet weight and dry weight, the growth of lettuce and Chinese cabbage on the soil treated with microbial product was faster than that on the untreated soil. The treatment of microbial product in the soil resulted in the increase of useful microorganisms, which seemed to enhance the growth of lettuce and Chinese cabbage.

Effects of microbial fertilizers on the yield and major characteristics of altari radish (알타리무 재비시 토양미생물제 처리가 수량 및 주요형질에 미치는 영향)

  • 김경제
    • Korean Journal of Organic Agriculture
    • /
    • v.9 no.1
    • /
    • pp.29-36
    • /
    • 2001
  • This study was conducted to investigate the effects of microbial fertilizers on the yield of altari radish, chemical components of plant and soil, and the microbial floras. Six microbial fertilizers, MPK+Husk+Palma, Husk+Palma, MPK+Compost, Compost, Bio livestock cattle system (BLCS) cattle dropping, and Tomi, were used in this experiment. The yield of altari radish was increased in treatments of all microbial fertilizers. The concentration of all chemical components in plant were not significantly different. Whereas the amount of $P_2$$O_{5}$ in soil was increased in Compost treatment, the other components were not significantly different compared with control. The total bacteria and bacilli in soil were increased in Tomi, Husk+Palma, and MPK+Husk+Palma treatments, and actinomycete and fungi were increased in Tomi treatment.

  • PDF

Effects of radon on soil microbial community and their growth

  • Lee, Kyu-Yeon;Park, Seon-Yeong;Kim, Chang-Gyun
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • The aim of this study was to estimate the microbial metabolic activity of indigenous soil microbes under the radon exposure with different intensity and times in the secured laboratory radon chamber. For this purpose, the soil microbes were collected from radon-contaminated site located in the G county, Korea. Thereafter, their metabolic activity was determined after the radon exposure of varying radon concentrations of 185, 1,400 and 14,000 Bq/㎥. The average depth variable concentrations of soil radon in the radon-contaminated site were 707, 860 and 1,185 Bq/㎥ from 0, 15, and 30 cm in deep, respectively. Simultaneously, the soil microbial culture was mainly composed of Bacillus sp., Brevibacillus sp., Lysinibacillus sp., and Paenibacillus sp. From the radon exposure test, higher or lower radiation intensities compared to the threshold level attributed the metabolic activity of mixed microbial consortium to be reduced, whereas the moderate radiation intensity (i.e. threshold level) induced it to the pinnacle point. It was decided that radon radiation could instigate the microbial metabolic activity depending on the radon levels while they were exposed, which could consequently address that the certain extent of threshold concentration present in the ecosystem relevant to microbial diversity and population density to be more proliferated.

Responses of Low-Quality Soil Microbial Community Structure and Activities to Application of a Mixed Material of Humic Acid, Biochar, and Super Absorbent Polymer

  • Li, Fangze;Men, Shuhui;Zhang, Shiwei;Huang, Juan;Puyang, Xuehua;Wu, Zhenqing;Huang, Zhanbin
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1310-1320
    • /
    • 2020
  • Low-quality soil for land reuse is a crucial problem in vegetation quality and especially to waste disposal sites in mining areas. It is necessary to find suitable materials to improve the soil quality and especially to increase soil microbial diversity and activity. In this study, pot experiments were conducted to investigate the effect of a mixed material of humic acid, super absorbent polymer and biochar on low-quality soil indexes and the microbial community response. The indexes included soil physicochemical properties and the corresponding plant growth. The results showed that the mixed material could improve chemical properties and physical structure of soil by increasing the bulk density, porosity, macro aggregate, and promote the mineralization of nutrient elements in soil. The best performance was achieved by adding 3 g·kg-1 super absorbent polymer, 3 g·kg-1 humic acid, and 10 g·kg-1 biochar to soil with plant total nitrogen, dry weight and height increased by 85.18%, 266.41% and 74.06%, respectively. Physicochemical properties caused changes in soil microbial diversity. Acidobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, Nitrospirae, Planctomycetes, and Proteobacteria were significantly positively correlated with most of the physical, chemical and plant indicators. Actinobacteria and Armatimonadetes were significantly negatively correlated with most measurement factors. Therefore, this study can contribute to improving the understanding of low-quality soil and how it affects soil microbial functions and sustainability.