• Title/Summary/Keyword: soil map

Search Result 565, Processing Time 0.028 seconds

Assessment of Groundwater Contamination Vulnerability by Geological Characteristics of Unsaturated Zone (불포화대 지질특성에 따른 지하수오염취약성 평가)

  • Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.727-740
    • /
    • 2018
  • The media in the undersaturated zone is defined as the uppermost layer of the water table at which the groundwater is unsaturated or saturated discontinuously. The properties of the unsaturated zone can affect the reduction of contaminants that flow from the lower part of soil to the water table. In recent, there have been problems in evaluating groundwater contaminations vulnerability because weighted value for permeability is given, regardless of anisotropy and heterogeneity in the unsaturated media. Geological media have various ranges of permeability. When applying the weighted value, representative of permeability for grain sizes standardized, to construction of contamination vulnerability, it will produce more exaggerated result than the case that considers unsaturated geological properties. In this study, we performed laboratory column tests considering two sets of the unsaturated layers in order to investigate the permeability in anisotropic unsaturated zone with anisotropy. On the basis of the tests, average permeability coefficients were calculated considering the properties of unsaturated media obtained from drill cores in the field. The final contamination vulnerability map constructed shows that the contamination vulnerability map applying the properties of geological media of the unsaturated zone coincides much better with the results measured in the field, compared to the case of contamination vulnerability considering the weighted value in the unsaturated zone.

Anti-inflammatory effect of soil blue-green algae Nostoc commune isolated from Daejeon National Cemetery (국립대전현충원에서 분리한 남조류 구슬말(Nostoc commune)의 항염증 효과)

  • Hong, Hyehyun;Bae, Eun Hee;Park, Tae-Jin;Kang, Min-Sung;Kang, Jae Shin;Chi, Won-Jae;Kim, Seung-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.2
    • /
    • pp.113-120
    • /
    • 2022
  • We examined the anti-inflammatory properties of Nostoc commune HCW0811 in lipopolysaccharide-stimulated RAW264.7 macrophage cells. The anti-inflammatory activity of HCW0811 on viability of treated cells was assessed by measuring the level of expression of NO, prostaglandin E2 and pro-inflammatory cytokines, namely interleukin-1β, interleukin-6, and tumor necrosis factor-α in HCW0811 treated RAW 264.7 macrophages. HCW0811 was non-toxic to cells and inhibited the production of cytokines in a concentration-dependent manner. In addition its treatment suppressed the production of pro-inflammatory cytokines in a dose-dependent manner, and concomitantly decreased the protein expressions of inducible NO synthase and cyclooxygenase-2. Moreover, the levels of the phosphorylation of mitogen-activated protein kinase family proteins such as extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38, and nuclear factor kappa B were reduced by HCW0811. These findings suggest that the HCW0811 collected from Daejeon National Cemetery have anti-inflammatory effects, and demonstrated its efficacy in cell-based in vitro assays.

Development of a GIS-based Computer Program to Design Countermeasures against Debris Flows (GIS기반 토석류 산사태 대응공법 설계 프로그램 개발)

  • Song, Young-Suk;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.23 no.1
    • /
    • pp.57-65
    • /
    • 2013
  • We developed a computer program (CDFlow v. 1.0) to design countermeasures against debris flows in natural terrain. The program can predict the probability of landslides occurring in natural terrain and can estimate the zone of damage caused by a debris flow. It can also be used to design the location and size of countermeasures against the debris flow. The program is run using the ArcGIS Engine, which is one of the most well-known Geographic Information System (GIS) tools for developers. The quasi-dynamic wetness index and the infinite slope stability equation were applied to predict landslide probability as a type of slope safety factor. The calculated safety factor was compared with the required safety factor, and areas of high probable potential for landslides were then selected and represented on the digital map. The volume of debris flow was estimated using these areas of high probable potential for landslides and soil depth. The accumulated volume of debris flow can be calculated along the flow channel. To assess the accuracy of the program, it was applied to a real landslide site at Deoksan-ri, Inje-gun, Kangwon-Province, where four debris barriers have been installed in the watershed of the site. The results of soil tests and a field survey indicate that the program has great potential for estimating probable landslide areas and the trajectory of debris flows. Calculation of the capacity volume of existing debris barriers revealed that they had insufficient capacity to store the calculated amount of debris flow. Therefore, this program enables a rational estimation of the optimal location and size of debris barriers.

Occurrence Characteristics of Bophi Vum Chromite Mineralized Zone in the Northwestern Myanmar (미얀마 북서부 보피붐 크롬철석 광화대의 산출특성)

  • Heo, Chul-Ho;Chi, Se-Jung;Kang, Il-Mo;Jin, Kwang-Min
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.351-362
    • /
    • 2014
  • In order to grasp the geological characteristics, the occurrence mode of ore body and development potential of Bophi Vum chromite mineralized zone in northwestern Myanmar, Korea Institute of Geoscience and Mineral Resources(KIGAM) and Department of Geological Survey and Mineral Exploration(DGSE) carried out joint exploration targeting on the $6km^2$ areas within the mineralized zone. Chromitites occur as a major Cr-ore body in the Bophi Vum area, and are enveloped by dunitic peridotites. As a result of geological survey, the geological map of Bophi Vum was drawn in the scale of 1:1,000, and we discovered that the chromitite ores are mainly distributed at the elevation range between 200 and 400 m. The soil geochemistry was conducted by collecting total 114 soil samples in the interval of 50 m after pitting ground surface under 0.7-1 m. Geochemical anomaly maps of Cr, Ni, Fe, and Mn were prepared by ICP-AES.

The Restoration Effect of Deltacon Method in Coastal Erosion (Deltacon공법을 통한 해안 침식지의 복구 효과 연구)

  • Han, Bong-Ho;Park, Seok-Cheol;Lee, Poong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.6
    • /
    • pp.35-50
    • /
    • 2017
  • This study is to see the recovery effect of the Deltacon method by investigating the amount of sand deposition, the topographical cross section and the vegetation structure; and to derive the effective recovery method of coastal erosion area. The target areas of this study include Jinri coastal dune, Bajireum coastal dune and Seopori coastal dune in Deokjeok-do Island, Ongjin-gun, Incheon. In order to assess the current status of the coastal erosion area recovery, the soil profile structure map was prepared on the site and then the amount of sand deposition within 1m was calculated indoors. The vegetation recovery status of the costal erosion area was assessed via the analyses of the topographical profile structure and the plant community structure, and we aim to derive the effective recovery plan of the Deltacon method with the results. With the Deltacon method, structures with ductile material, special non-woven fabric bags filled with soil and vegetation can be performed therefore the structuralstability and prevention of sand erosion can be achieved. The amounts of sand deposition of Bajireum coastal dune, Seopori costal dune and Jinri costal dune were calculated $0.98{\sim}2.54m^3$, $1.02{\sim}2.96m^3$, and $0.27{\sim}0.75m^3$, respectively, and it is considered that the costal erosion recovery is actively performed for Bajireum costal dune and Seopori costal dune. The analysis results of vegetation structures by topography show that the installation of the send collecting net in steep areas has been highly effective and the Deltacon-constructed target areas have been restored to vegetation and the costal dune, which is similar to the natural dune. The investigation of the plant community structure in Deokjeok-do Island costal dune, Incheon displayed similar research results of the existing costal dune flora and confirmed the emergence of Lathyrus japonicus, Carex kobomugi, Elymus mollis, Vitex rotundifolia, and Calystegia soldanella and others. In order to carry out further effective recovery with the Deltacon method, improvements to rootage of herbaceous vegetation are needed in areas without foredune herbaceous vegetation, and continuos maintenance & management monitoring of connected windbreak forest to costal dunes are also necessary.

Nondestructive Deterioration Diagnosis for the Former Ore Dressing Plant in the Yongwha Mine of Registered Cultural Property No. 255 (등록문화재 제255호 영양 구 용화광산 선광장의 비파괴 훼손도 진단)

  • Chun, Yu Gun;Lee, Chan Hee
    • Journal of Conservation Science
    • /
    • v.28 no.3
    • /
    • pp.235-245
    • /
    • 2012
  • Nondestructive deterioration diagnosis has been carried out for the former ore dressing plant of the Yongwha mine in Yeongyang (Registered Cultural Property No. 255). Deterioration rates about organic contaminant and soil of the upper part (7 to 13 layer) indicate higher than the lower part (1 to 6 layer) of the ore dressing plants. By contrast, deterioration rates such as crack, break out and discoloration of the lower part indicate very higher than the upper part. It is estimated that the plants of the lower part that mechanical and chemical process had been done for flotation were damaged severely by physicochemical weathering with reaction of concrete and chemical solution. As results of ultrasonic velocity measurement, average p-wave velocity of plants were measured 2,462m/s (compressive strength $529kgf/cm^2$). As for the analytical results of surface contaminants and soil compositions using P-XRF, they were identical with major elements (Cu, Zn, Pb, Fe and As) of ore minerals from the Yongwha mine. Therefore, the ore dressing plant should be treated by phytoremediation with conservation because heavy metals could impinged upon plants and natural environment.

Spatial Characteristics of Gwangneung Forest Site Based on High Resolution Satellite Images and DEM (고해상도 위성영상과 수치고도모형에 근거한 광릉 산림 관측지의 공간적 특성)

  • Moon Sang-Ki;Park Seung-Hwan;Hong Jinkyu;Kim Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.1
    • /
    • pp.115-123
    • /
    • 2005
  • Quantitative understanding of spatial characteristics of the study site is a prerequisite to investigate water and carbon cycles in agricultural and forest ecosystems, particularly with complex, heterogeneous landscapes. The spatial characteristics of variables related with topography, vegetation and soil in Gwangneung forest watershed are quantified in this study. To characterize topography, information on elevation, slope and aspect extracted from DEM is analyzed. For vegetation and soil, a land-cover map classified from LANDSAT TM images is used. Four satellite images are selected to represent different seasons (30 June 1999, 4 September 2000, 23 September 2001 and 14 February 2002). As a flux index for CO₂ and water vapor, normalized difference vegetation index (NDVI) is calculated from satellite images for three different grid sizes: MODIS grid (7km x 7km), intensive observation grid (3km x 3km), and unit grid (1km x 1km). Then, these data are analyzed to quantify the spatial scale of heterogeneity based on semivariogram analysis. As expected, the scale of heterogeneity decreases as the grid size decreases and are sensitive to seasonal changes in vegetation. For the two unit grids where the two 40 m flux towers are located, the spatial scale of heterogeneity ranges from 200 to 1,000m, which correspond well to the climatology of the computed tower flux footprint.

Development and Application of Landslide Analysis Technique Using Geological Structure (지질구조자료를 이용한 산사태 취약성 분석 기법 개발 및 적용 연구)

  • 이사로;최위찬;장범수
    • Spatial Information Research
    • /
    • v.10 no.2
    • /
    • pp.247-261
    • /
    • 2002
  • There are much damage of people and property because of heavy rain every year. Especially, there are problem to major facility such as dam, bridge, road, tunnel, and industrial complex in the ground stability. So the counter plan for landslide or ground failure must be necessary In the study, the technique of regional landslide susceptibility assessment near the Ulsan petrochemical complex and Kumgang railway bridge was developed and applied using GIS. For the assessment, the geological structures such as bedding and fault were surveyed and the geological structure, topographic, soil, forest, and land use spatial database were constructed using CIS. Using the spatial database, the factors that influence landslide occurrence, such as slope, aspect, curvature and type of topography, texture, material, drainage and effective thickness of soil, type, age, diameter and density of forest, and land use were calculated or extracted from the spatial database. For application of geological structure, the geological structure line and fault density were calculated. Landslide susceptibility was analyzed using the landslide-occurrence factors by probability method that is summation of landslide occurrence probability values per each factors range or type. The landslide susceptibility map can be used to assess ground stability to protect major facility.

  • PDF

The Study on the Selection of Suitable site for Palustrine Wetland Creation at Habitat Restoration Areas for Oriental stork(Ciconia boyciana) (황새서식처 복원지역에서의 소택지 조성 적지선정 연구)

  • Son, Jin-Kwan;Sung, Hyun-Chan;Kang, Bang-Hun
    • Journal of Wetlands Research
    • /
    • v.13 no.1
    • /
    • pp.95-104
    • /
    • 2011
  • This study was implemented to select the suitable site for Palustrine Wetland at habitat restoration for Oriental stork, red species and top-level predator in ecosystem. The evaluation items was fitted by review the antecedent studies on the suitable site selection model and evaluation items of wetland. The study sites were setted in $5,884,800m^2$ area including Yesan-gun Dae-ree, in which Oriental stork' park will be located, through DEM(Digital Elevation Model) watershed analysis. The thematic map by valuation items with secure of water resource, soil, topography, distance between roads, houses, etc., land using, wildlife corridor, and type of water resource was prepared using GIS program. The sites with high evaluation score were selected as suitable creation sites for wetland through overlapping those maps. Total 8 sites with over 18 point were selected. The characteristics of selected sites show that the soil are consisted of clay, the connectivity is valued high with surface water, the slope are gentle, and the connectivity is good with surroundings ecosystem. The result of water quality analysis, which was implement to survey available water resources and develop the solution of problem of water environment, showed that water quality at Salmok reservoir and Bogang reservoir is generally good, but the water quality at stagnant water body rising out from groundwater is not good. This study has limit to select the suitable sites of wetland only by analyzing physiotherapy environment in study area. Hereafter, the study is need to examine closely enhancement effects of biological diversity through investigation of biotic environment.

A Study on the Vulnerability Assessment of Forest Vegetation using Regional Climate Model (지역기후모형을 이용한 산림식생의 취약성 평가에 관한 연구)

  • Kim, Jae-Uk;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.5
    • /
    • pp.32-40
    • /
    • 2006
  • This study's objects are to suggest effective forest community-level management measures by identifying the vulnerable forest vegetation communities types to climate change through a comparative analysis with present forest communities identified and delineated in the Actual Vegetation Map. The methods of this study are to classify the climatic life zones based on the correlative climate-vegetation relationship for each forest vegetation community, the Holdridge Bio-Climate Model was employed. This study confirms relationship between forest vegetation and environmental factors using Pearson's correlation coefficient analysis. Then, the future distribution of forest vegetation are predicted derived factors and present distribution of vegetation by utilizing the multinomial logit model. The vulnerability of forest to climate change was evaluated by identifying the forest community shifts slower than the average velocity of forest moving (VFM) for woody plants, which is assumed to be 0.25 kilometers per year. The major findings in this study are as follows : First, the result of correlative analysis shows that summer precipitation, mean temperature of the coldest month, elevation, soil organic matter contents, and soil acidity (pH) are highly influencing factors to the distribution of forest vegetation. Secondly, the result of the vulnerability assessment employing the assumed velocity of forest moving for woody plants (0.25kmjyear) shows that 54.82% of the forest turned out to be vulnerable to climate change. The sub-alpine vegetations in regions around Mount Jiri and Mount Seorak are predicted to shift the dominance toward Quercus mongolica and Pinus densiflora communities. In the identified vulnerable areas centering the southern and eastern coastal regions, about 8.27% of the Pinus densiflora communities is likely to shift to sub-tropical forest communities, and 3.38% of the Quercus mongolica communities is likely to shift toward Quercus acutissima communities. In the vulnerable areas scattered throughout the country, about 8.84% of the Quercus mongolica communities is likely to shift toward Pinus densiflora communities due to the effects of climate change. The study findings concluded that challenges associated with predicting the future climate using RCM and the assessment of the future vulnerabilities of forest vegetations to climate change are significant.