• Title/Summary/Keyword: soil improvement

Search Result 1,322, Processing Time 0.03 seconds

Effects of Several Effective Microorganisms (EM) on the Growth of Chinese cabbage (Brassica rapa)

  • Hussein, Khalid A.;Joo, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.4
    • /
    • pp.565-574
    • /
    • 2011
  • The development of satisfactory alternatives for supplying the nutrients needed by crops could decrease the problems associated with conventional NPK chemical fertilizers. In this study, the effects of bacterial and fungal effective microorganisms (EM) on the growth of Chinese cabbage (Brassica rapa) were evaluated. This investigation was carried out parrallel with conventional NPK chemical fertilizer and a commercial sold microbial fertilizer to compare between each of their effect. Sterile water and molasses were served as controls. Azotobacter chroococcum effect also was studied either alone or in combination with the effective microorganisms on the growth parameters. In contrast to the bacterial EM, the fungal EM alone without A. chroococcum had a more stimulating effect than fungal EM combined with A. chroococcum. Results showed that seedling inoculation significantly enhanced B. rapa growth. Shoot dry and fresh weight, and leaf length and width significantly were increased by both bacterial and fungal inoculation. The results indicated that the NPK chemical fertilizer deteriorates the microflora inhabiting the soil, while the effective microorganisms either fungal or bacterial ones increased the microbial density significantly. This study implies that both of fungal and bacterial EM are effective for the improvement of the Chinese cabbage growth and enhance the microorganisms in soil. The results showed antagonism occurred between A. chroococcum and each of Penicillium sp and Trichoderma sp in both agar and plant assays. The data were statistically analyzed by ANOVA and Dunnett test.

Non-fluid representation technique using fluid simulation (유체 시뮬레이션 기술을 이용한 비유체 표현기법)

  • Lee, Sung-Jun;Heo, Yeon-Jin;Shin, Byeong-Seok
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.4
    • /
    • pp.51-61
    • /
    • 2019
  • In this paper, we have implemented soil simulation using fluid simulation technology. A widely used NVIDIA FleX was used to represent the soil generated by excavation work. FleX is a particle-based physics simulation library that combines SPH (Smoothed-particle hydrodynamics) and Position Based Dynamics techniques. However, since the soil has not only fluid properties but also non-fluid properties, it is difficult to simulate with the functions provided by conventional FleX. In this study, we added a technique to simulate non-fluid behavior using existing Flex. This can lead to effective results improvement at low cost.

Comparative study on bearing characteristics of pervious concrete piles in silt and clay foundations

  • Cai, Jun;Du, Guangyin;Xia, Han;Sun, Changshen
    • Geomechanics and Engineering
    • /
    • v.27 no.6
    • /
    • pp.595-604
    • /
    • 2021
  • With the advantages of high permeability and strength, pervious concrete piles can be suitable for ground improvement with high water content and low bearing capacity. By comparing the strength and permeability of pervious concrete with different aggregate sizes (3-5 mm and 4-6 mm) and porosities (20%, 25%, 30% and 35%), the recommended aggregate size (3-5 mm) and porosity (30%) can be achieved. The model tests of the pervious concrete piles in soft soil (silt and clay) foundations were conducted to evaluate the bearing characteristics, results show that, for the higher consolidation efficiency of the silty foundation, the bearing capacity of the silty foundation is 16% higher, and the pile-soil stress ratio is smaller. But when it is the ultimate load for the piles, they will penetrate into the underlying layer, which reduces the pile-soil stress ratios. With higher skin friction of the pile in the silty foundation, the pile penetration is smaller, so the decrease of the pile axial force can be less. For the difference in consolidation efficiency, the skin friction of pile in silt is more affected by the effective stress of soil, while the skin friction of pile in clay is more affected by the lateral stress. When the load reaches 4400 N, the skin friction of the pile in the silty foundation is about 35% higher than that of the clay foundation.

Study on the Soil Improvement in the Grassland I. Effects of the dolomite particle and the shell powder application on soil characteristics, dry matter yield and nutritive value of forages in loam soil (초지에서 토양 개량에 관한 연구 I. 양토에서 도로마이트 입자도와 패각분 시용이 토양특성과 목초의 수량 및 사료가치에 미치는 영향)

  • Lee, J.K.;Choi, S.S.;Kim, M.J.;Park, G.J.;Yoon, S.H.;Shin, J.S.;Shin, D.E.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.19 no.2
    • /
    • pp.159-166
    • /
    • 1999
  • This study was conducted to investigate the effects of application of the dolomite particle and the shell powder on soil characteristics, dry matter yield and nutritive value of forages in loam soil at the experimental field of National Livestock Research Institute, Suwon, from 1994 to 1996. Application treatments were control, lime, dolomite 0.5, 2.0, 4.0mm, and shell powder in mixed pasture. Rate of dust occurrence was greatly decreased according to dolomite application and the dissolving rate in soil was highest in shell powder application among treatments. Although there was no significant difference, average dry matter yield of forages for 3 years was slightly increased with the application of lime, shell powder, dolomite 0.5mm, 4.0mm, 2.0mm and control in order. Both Ca and Mg contents of forages were no differences among treatments in 1994. However, all treatments were higher than those of control in 1995. And K and Na contents of forages were no differences among treatments. Lime requirement was greatly increased from 2,630 to 6,150kg per ha with the lapse of time. Although soil hardness was optimum level at first, it was likely to become hard little by little after treatments. Solid phase of soil was lowered a little except for control. Organic matter and available $P_2O_5$ contents of soil were highest in shell powder application among treatments, and K, Ca and Mg contents of soil were no differences among treatments. Ca content was increased a little in 1995, but decreased a little in 1996 compared to that of soil before treatments in 1994. AIso, Mg content was lowered than that of soil before experiment in 1995 and 1996. The results demonstrated that use of dolomite and shell powder as lime substitutes could be reduced dust problem and coast pollution as well as soil improvement. Therefore, it is desirable to apply the dolomite and the shell powder every 3 years in loam soil.

  • PDF

Effects of Green Manure Crops on Improvement of Chemical and Biological Properties in Soil (토양 화학성 및 생물학성 변화에 대한 녹비작물 시용 효과)

  • Choi, Bong-Su;Jung, Jung-Ah;Oh, Mi-Kyung;Jeon, Sang-Ho;Goh, Hyun-Gwan;Ok, Yong-Sik;Sung, Jwa-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.650-658
    • /
    • 2010
  • We used green manure crops such as hairy vetch, crimson clover, rye, sorghum, and sudan grass by mixing with soils to assess the effects of green manure crops on nutrient supply and soil quality improvement. Temporal changes in soil inorganic nitrogen, carbohydrate, microbial biomass, and humus content were determined as soil quality indicators. Inorganic nitrogen content of the control maintained similar level during the whole period, but it had continually increased until 4 weeks after incorporation (WAI) of green manure crops. Especially, inorganic nitrogen content sharply increased in sudan grass. After incorporation of green manure crops, temporal change of soluble sugar in soils was as follows: it had gradually increased in legume green manure crops-incorporated soils until 7 WAI, which was the highest, and then showed the tendency to be reduced. Meanwhile, it in non-legume green manure crops-incorporated soils rapidly increased after the incorporation, and reached the maximum around 4 WAI. Humic acid by the decomposition of crop residues in green manure crops-incorporated soils was greatly enhanced with the elapsed time of 4 WAI, although it was low at the same level as the control until 2 weeks. In addition, there was a difference in fulvic acid by incorporated crops, fulvic acid in hairy vetch, sorghum and sudan grass showed a similar tendency with the change in humic acid. Our results suggest that soluble sugar, microbial activity and humic acid could be available indicators to evaluate the fertility of green manure crops-incorporated soils.

Improvement of Sediment Trapping Efficiency Module in SWAT using VFSMOD-W Model (VFSMOD-W 모형을 이용한 SWAT 모형의 초생대 유사 저감 효율 모듈 개선)

  • Park, Younshik;Kim, Jonggun;Kim, Namwon;Park, Joonho;Jang, Won-Seok;Choi, Joongdae;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.4
    • /
    • pp.473-479
    • /
    • 2008
  • Environment problem has been arising in many countries. Especially, soil erosion has been deemed as one of the biggest issues because sediment causes muddy water and pollutants, such as agricultural chemicals, flow in the stream with this sediment. Many studies, regarding soil loss and non-point source pollution from watershed, has been performed while serious problem has been known. Soil loss occurred in most agricultural area by rainfall and runoff. It makes hydraulic structure unstable, causes environmental economical problems because muddy water destroys ecosystem and causes intake water deterioration. As revealing serious effects of muddy water by sediment, many researches have been doing with various methods. Hydraulic structures establishments such as soil erosion control dams and grit chamber are common. Vegetative filter strip is investigated in this study because vegetative filter strip is designed for reducing sediment from upland areas of the watershed, and it has many functions, not only sediment reduction but also runoff water quality improvement and wildlife habitat. With these positive functions of the vegetative filter strip, the study about vegetative filter strip has been increasing for reducing sediment because it is more effective than hydraulic structures from an environmental perspective. But the sediment trapping efficiency by vegetative filter strip, needs to be investigated and designed first. Therefore the model, VFSMOD-W, was used in this study as it can estimate sediment trapping efficiency of vegetative filter strip under various field, vegetation, weather condition. Sensitive factors to sediment trapping efficiency are studied with VFSMOD-W, and sediment trapping efficiency equation has been derived using two most sensitive factors. It is thought that the equation suggested in this study can be used in Soil and Water Assessment Tool (SWAT), to overcome the limit of SWAT filter strip module, which is based solely on filter strip width.

Unconfined Compressive Strength of Reduced Slag-Mixed Clay (환원슬래그 혼합점토의 일축압축강도 특성)

  • Cho, Minjae;Yoon, Yeowon;Kim, Jaeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.6
    • /
    • pp.33-39
    • /
    • 2012
  • With the increase of steel production research interest on the recycling of slag as a by-product also increases steadily. Currently in Korea a lot of researches on blast-furnace slag have been made. However, the researches on the steel slag have been rarely made. Also, a research of steel slag, especially the use of oxidation furnace slag as aggregates for concrete progress, is performing actively, but the research results on the furnace slag are almost nothing. Recently, the research about the furnace slag as backfill material and embankment material confirmed the possibility of the clay soil amendment. Therefore, the object of this study is to review the possibility as civil engineering materials for soil improvement and to find the optimum mixture ratio of furnace slag. This research analyzed the ingredient component of the reduced slag by SEM, XRF, XRD tests and examined the strength increase using unconfined compression tests when the clay and reduced slag are mixed each other. Through this test, the definite strength increase is confirmed according to the mixture of the reduced slag and the possibility of soil improvement is also confirmed based on this result. The object of the study is both utilizing the by-product for civil engineering purpose and effective recycling by the application of the furnace slag for soil improvement.

A Study on the Drainage Effects of Gravel Drain by Laboratory Model Test (실내모형시험을 통한 Gravel Drain의 배수효과에 관한 연구)

  • 천병식;김백영;고용일;여유현;박경원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.87-94
    • /
    • 1999
  • Sand drain as a vertical drainage is widely used in soft ground improvement. Recently, sand, the principal source of sand drain, is running out. A laboratory model test was carried out to utilize gravel as a substitute for sand. Though which the characteristics of gravel are compared to those of sand for engineering purpose. Two cylindrical containers for the model test were filled with marine clayey soil from the west coast of Korea with a column in the center, one with sand, the other with gravel. Vibrating wire type piezometers were installed at the distance of 1.0D, 1.5D and 2.0D from the center of the column. D is the diameter of the column. The transient process of pore water pressure with loading and the characteristics of consolidation were studied with the data gained from the measuring instrument place on the surface of the container. The parameter study was performed for the marine clayey soil before and after the test in order to check the effectiveness of the improvement. The clogging effect was checked at various depth in gravel column after the test. According to the test, the settlement was found to be smaller in gravel drain than in sand drain. The increase in bearing capacity by gravel pile explains the result. The clogging effect was not found in gravel column. As a result, it is assumed that gravel is relatively acceptable as a drainage material.

  • PDF

A Study on the Relaxion of Secondary Compression Settlement using Preloading Method (프리로딩에 의한 2차 압밀침하량 감소에 관한 연구)

  • Huh, Ik-Chang;Im, Jong-Chul;Chang, Ji-Gun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1086-1093
    • /
    • 2005
  • In soft ground, consolidation settlement is mainly consider. The primary consolidation settlement which is the time when the excess pore water pressure is completely dispersed and the secondary consolidation settlement which follows. Recently as the depth of consolidation layer increases the consideration of not only the primary consolidation settlement but also of the secondary consolidation settlement becomes a very important element. But up to the present there were only a few in-depth study of the secondary consolidation settlement performed. At present there are a lot of methods available when it comes to the improvement of soft soil. In this study, Preloading Method which is the most commonly used soft soil improvement method locally was used in order to investigate the method for the reduction of secondary consolidation settlement. The objective of this study is to determine the amount of preloading required to reduce secondary consolidation settlement and to determine whether secondary consolidation settlement using standard consolidation test.

  • PDF

A Study of Improvement Pile friction in Marine Clay using Electrokinetics Treatment (전기동역학을 이용한 해성 점토 지반내의 말뚝 마찰지지력 향상에 관한 연구)

  • Lee, Kwang-Yeol;Gu, Tae-Gon;Tjandra, Daniel;Hyun, Jae-Duck
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.211-218
    • /
    • 2004
  • The objective of this study is to enhance the ultimate bearing capacity of piles embedded in marine clay by electrokinetic(EK). The focus of improvement is at interlace between soil and pile. A series laboratory test was performed in EK cell. In each of test, the pile in the centre as anode is surrounded by cathode and it was installed in the vicinity of pile with triangular layout. The pile was made by stainless and embedded with 30cm of depth. Afterward, the DC voltage was applied to electrode over period of time. It caused flowing water from anode to cathode, thus the soil in the center of box has higher bearing capacity value than in the side of box has. It is shown by increasing of un-drained shear strength(Cu) near the pile and also ultimate bearing capacity of pile increase after EK treatment. In the future work, the continuous of this study is finding the effective DC voltage and makes EK treatment more applicable in the field.

  • PDF