• Title/Summary/Keyword: soil improvement

Search Result 1,317, Processing Time 0.03 seconds

An Estimation of Wedge Type Removable Soil Nailing System Using by Laboratory Tests (실내역학 실험을 통한 쐐기형 제거식 쏘일네일링 공법의 적용성 평가)

  • Park, Si-Sam;Han, Yeon-Jin;Heo, Seong-Jun;Yoon, Myung-June;Kim, Hong-Taek;Park, Ju-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1330-1333
    • /
    • 2009
  • The soil nailing method had used in variable construction field because of construction convenience and reinforcement effect. Especially, the removal soil nailing method is useful support system in vertical excavation. In this study, to develop the wedge type removable soil nailing method for improvement of the removal soil nailing method. Because of the reinforcement materials is most important in soil nailing method, to evaluate the mechanical characteristics during laboratory strength test in this study. To conduct bond strength test of deformed bar combined with a wedged screw inside plastic fixed socket for evaluate the strength characteristics of wedge type removable soil nailing method and evaluate the strength characteristics of fixed socket based on laboratory tests.

  • PDF

Risk Assessment of Soil Erosion in Gyeongju Using RUSLE Method (RUSLE 기법을 이용한 경주지역의 토양침식 위험도 평가)

  • Oh, Jeong-Hak;You, Ju-Han;Kim, Kyung-Tae;Lee, Woo-Sung
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.3
    • /
    • pp.313-324
    • /
    • 2011
  • The purpose of this study is to present the raw data for establishing the plan of top soil conservation in soil environment and preventing the soil loss by establishing the potential amount of soil loss using RUSLE. The results are as follows. To apply the RUSLE model, we calculated the potential amount of soil loss by using 5 factors; rainfall erosion factor(R), topographical factor(LS), soil erosion factor(K), land cover factor(C) and erosion control factor(P). The assessment map of soil loss was drawn up by classifying 5 grades. According to the soil loss estimation by the RUSLE, it showed that approximately 83.9% of the study area had relatively lower possibility of soil loss which was the 1 ton/ha in annual soil loss. Whereas, the 7.0% of the study area was defined as high risk area which was the 10 ton/ha in annual. Therefore, this area was needed that there was environment-friendly construction of farm land, improvement of cultivation environment and so forth. In future, if we will analyze the amount of soil loss of Gyeongju national park and Hyeongsan river watershed, we will offer the help to establishing the conservation plan of soil environment in Gyeongsangbuk-do.

Model tests for the inhibition effects of cohesive non-swelling soil layer on expansive soil

  • Lu, Zheng;Tang, Chuxuan;Yao, Hailin;She, Jianbo;Cheng, Ming;Qiu, Yu;Zhao, Yang
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.91-97
    • /
    • 2022
  • The cohesive non-swelling soil (CNS) cushion technology has been widely applied in the subgrade and slope improvement at expansive soil regions. However, the mechanism of the inhibition effect of the CNS layer on expansive soil (ES) has not been fully understood. We performed four outdoor model tests to further understand the inhibition effect, including different kinds of upper layer and thickness, under the unidirectional seepage condition. The swelling deformation, soil pressure, and electrical resistivity were constantly monitored during the saturation process. It is found that when a CNS layer covered the ES layer, the swelling deformation and electrical resistivity of the ES layer decreased significantly, especially the upper part. The inhibition effect of the CNS layer increases with the increase of CNS thickness. The distribution of vertical and lateral soil pressure also changed with the covering of a CNS layer. The electrical resistivity can be an effective index to describe the swelling deformation of ES layer and analyze the inhibition effect of the CNS layer. Overall, the CNS deadweight and the ion migration are the major factors that inhibit the swelling deformation of expansive soil.

Soil-Water Characteristic Curve of Sandy Soils Containing Biopolymer Solution (바이오폴리머를 포함한 모래지반의 흙-습윤 특성곡선 연구)

  • Jung, Jongwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.10
    • /
    • pp.21-26
    • /
    • 2018
  • Soil-water characteristic curve, which is called soil retention curve, is required to explore water flows in unsaturated soils, relative permeability of water in multi-phase fluids flow, and change to stiffness and volume of soils. Thus, the understanding of soil-water characteristic curves of soils help us explore the behavior of soils inclduing fluids. Biopolymers are environmental-friendly materials, which can be completely degraded by microbes and have been believed not to affect the nature. Thus, various biopolymers such as deacetylated power, polyethylene oxide, xanthan gum, alginic acid sodium salt, and polyacrylic acid have been studies for the application to soil remediation, soil improvement, and enhanced oil recovery. PAA (polyacrylic acid) is one of biopolymers, which have shown a great effect in enhanced oil recovery as well as soil remediation because of the improvement of water-flood performance by mobility control. The study on soil-water characteristic curves of sandy soils containing PAA (polyacrylic acid) has been conducted through experimentations and theoretical models. The results show that both capillary entry pressure and residual water saturation dramatically increase according to the increased concentration of PAA (polyacrylic acid). Also, soil-water characteristic curves by theoretical models are quite well consistent with the results by experimental studies. Thus, soil-water characteristic curves of sandy soils containing biopolymers such as PAA (polyacrylic acid) can be estimated using fitting parameters for the theoretical model.

Studies on Uptake by Crops of Lead and Reduction of it's Damage -II. Effect of application of calcium and phosphate materials on Pb Solubility in Soil (농작물(農作物)에 대(對)한 납(pb)의 흡수(吸收) 및 피해경감(被害輕減)에 관(關)한 연구(硏究) -II. 석회(石灰)와 인산물질시용(燐酸物質施用)이 토양중(土壤中) 납(pb) 용출량(溶出量)에 미치는 영향(影響))

  • Kim, Kyu Sik;Kim, Bok Young;Han, Ki Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.3
    • /
    • pp.217-221
    • /
    • 1986
  • A column test was conducted to find out the effect of application of slaked lime, calcium sulfate, calcium superphosphate, and phosphoric acid on the solubility of lead in soil. The soil was adjusted to 310.8 ppm concentration of Pb and applied with amounts of calcium equivalent to 600, 1000, 2000 ppm as slaked lime; sulfate 144, 288, 432 ppm as calcium sulfate; phosphate 95, 190, 285 ppm as calcium superphosphate and phosphoric acid, respectively. The results obtained are as follows: 1. The increasing application of improvement agents reduced the amounts of water soluble Pb in soil. Phosphoric acid was the most effect among to the treatments. 2. The slaked lime treatment has the highest pH of soil and the lowest at the phosphoric acid one. The soil Eh has a reverse tendency the soil pH. 3. Water soluble Ca, $PO_4$ and $SO_4$ contents increased with increasing application amounts of improvement agents in soil. 4. $1N-NH_4$ OAC soluble Pb content in soil was a decreasing tendency in the order of calcium superphosphate, phosphoric acid, slaked lime, calcium sulfate and control after experiment.

  • PDF

An Experimental Study on the Heave Characteristics of DCM Heaving Soil (DCM 부상토의 융기 특성에 대한 실험적 연구)

  • Eonsang Park;Seungdo Park
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.2
    • /
    • pp.5-12
    • /
    • 2023
  • In this study, the amount of heaving soil and the heave characteristics of the heaving soil generated at the actual site were quantitatively analyzed through DCM laboratory test construction. By reproducing a series of construction processes of the DCM method in a large-scale soil tank close to the actual site, the amount of heaving soil was predicted and the elevation characteristics such as elevation, diffusion range, diffusion angle and amount of elevation of the heaving soil were evaluated. As a result of the laboratory test construction, the actual elevation in terms of similarity within the DCM improvement section is 0~8.18m, and an average of 3.50m is observed. The actual diffusion range of the heaving soil converted to the similarity ratio is distributed from 28.0 to 38.0m on the left and right sides of the improvement section. The total amount of heaving soil calculated by the SUFFER program based on the results of the laboratory test construction is 19,901m3. Compared with the injected slurry amount of 16,992m3, the amount of heave compared to the injected amount is analyzed as 85.4%. The diffusion angle of DCM heaving soil, which analyzed the results of DCM laboratory test construction with the SUFFER program, is measured to be 30.0~38.0° at a depth of 50.0m, and is evaluated as an average of 34.0°. On the other hand, based on the DCM laboratory test construction and the analysis results using the program performed in this study, the amount of heaving soil at the DCM depths of 40.0m and 60.0m is predicted.

Chronological Role of the Soil Research in Korea - Analysis of Research Reports on Soil from 1906 to 2012 -

  • Yun, Sun-Gang;Kwon, Soon-Ik;Hong, Seung-Chang;Kim, Min-Kyeong;Chae, Mi-Jin;Park, Chan-Won;Jung, Goo-Bok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.5
    • /
    • pp.303-307
    • /
    • 2013
  • Research reports on soil during the years from 1906 to 2012 have been analyzed to understand the role and pattern of soil research in agriculture. The number of research reports in relation with the key word of soils were 2,211 cases and classified in accordance with the criteria of research area, research subject, and research place of report papers. During the 40 years from 1906 to 1946, research work on soil chemistry was reached 62%, highest in the research area. In the case of research subject, research reports on soil fertility and soil nutrients was highest as 42.2%, and the next subject on soil salt and desalinization was about 19.5%. Research places were in the order of paddy as 34.1%, upland as 23.7%, and reclaimed soil as 22.5%. From 1953 to 2012 during 60 years, in the research area report papers were mainly concentrated on chemistry area as 32% and the next was physics as 26%, and environment as 12%. In the case of research subject during the same period, nutrient management report was reached 21.1%, and soil improvement on chemical and physical properties for optimum crop growth was 11.9%. Soil survey and data base establishment report was 8.6%. Research place were in the order of upland as 34.9%, paddy as 25.7%, and vinyl house as 12.5%, which showed reversed pattern compared to that of before 40 years.

Responses of Low-Quality Soil Microbial Community Structure and Activities to Application of a Mixed Material of Humic Acid, Biochar, and Super Absorbent Polymer

  • Li, Fangze;Men, Shuhui;Zhang, Shiwei;Huang, Juan;Puyang, Xuehua;Wu, Zhenqing;Huang, Zhanbin
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1310-1320
    • /
    • 2020
  • Low-quality soil for land reuse is a crucial problem in vegetation quality and especially to waste disposal sites in mining areas. It is necessary to find suitable materials to improve the soil quality and especially to increase soil microbial diversity and activity. In this study, pot experiments were conducted to investigate the effect of a mixed material of humic acid, super absorbent polymer and biochar on low-quality soil indexes and the microbial community response. The indexes included soil physicochemical properties and the corresponding plant growth. The results showed that the mixed material could improve chemical properties and physical structure of soil by increasing the bulk density, porosity, macro aggregate, and promote the mineralization of nutrient elements in soil. The best performance was achieved by adding 3 g·kg-1 super absorbent polymer, 3 g·kg-1 humic acid, and 10 g·kg-1 biochar to soil with plant total nitrogen, dry weight and height increased by 85.18%, 266.41% and 74.06%, respectively. Physicochemical properties caused changes in soil microbial diversity. Acidobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, Nitrospirae, Planctomycetes, and Proteobacteria were significantly positively correlated with most of the physical, chemical and plant indicators. Actinobacteria and Armatimonadetes were significantly negatively correlated with most measurement factors. Therefore, this study can contribute to improving the understanding of low-quality soil and how it affects soil microbial functions and sustainability.

The Effect of Soil Texture on Fruits and Growth Properties in Rabbiteye Blueberries

  • Kim, Hong-lim;Kwack, Yong-Bum;Lee, Mock-hee;Chae, Won-Byoung;Hur, Youn-Young;Kim, Jin-Gook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.582-587
    • /
    • 2015
  • This study was conducted to compare the plant growth and fruit quality of blueberries grown in different soil textures of Korea, in order to utilize the results for stable production and soil improvement. Rabbiteye blueberry cultivars 'Tifblue' and 'Baldwin' were planted and grown for three years from 2013 in wagner pot (1 $2000a^{-1}$) in a greenhouse of Namhae Sub-station, Institute of Horticultural and Herbal Science. The plants were grown in four soil textures, sand, sandy loam, loam and silt loam, and nutrient uptake and growth characteristics of plants were investigated. Leaf nitrogen and phosphorus contents of two cultivars grown in different soil textures ranged between 8.6 to $10.5gkg^{-1}$, which was lower than appropriate level for rabbiteye blueberry. However, the contents of potassium, calcium and magnesium in leaves were appropriate levels as $2.29{\sim}3.62gkg^{-1}$, $4.46{\sim}5.46gkg^{-1}$ and $1.45{\sim}2.12gkg^{-1}$, respectively. Nitrogen and phosphate contents in leaves were higher in the two cultivars grown in silt loam soil. There was no significant difference in plant volume and root dry weight among four soil textures in two cultivars. However, dry weight of leaves and branches were highest in loam soil. Fruit production was highest in loam and silt loam soil in two cultivars, showing negative correlation with the amount of sand in soil. However, sugar and acidity showed no correlation with sand content in soil. These results show the limit to the blueberry growth in soil that has no nutrient holding capacity; however, most of Korean soils that have good nutrient holding capacity can produce competitive fruits if the drainage is improved.

Stiffness Characterization of Biopolymer-treated Sandy Soils using Shear Wave Velocity (전단파속도를 이용한 바이오폴리머 처리 사질토의 강성특성 평가)

  • Cho, Hyunmuk;Jun, Minu;Lee, Eun Sang;Hong, Won-Teak
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.55-63
    • /
    • 2024
  • Xanthan gum biopolymer is an ecofriendly ground stabilizer that maintains stability in a wide range of temperatures and pH values. The binding effect of sandy soil particles realized by injecting xanthan gum biopolymer is dependent on the xanthan gum matrix, which is formed during the drying process; thus a study on the effects of the drying process of the xanthan gum solution on the changes in stiffness characteristics of sandy soil is required. In this study, shear wave velocity and electrical resistivity were monitored in sandy soil specimens saturated with biopolymer solutions of different gravimetric concentrations to investigate the improvement effects of biopolymer-treated sandy soils with the drying process. The experimental results reveal that both shear wave velocity and electrical resistivity increase during drying process. The results demonstrate the stiffness improvement effects of biopolymer-treated sandy soils. In addition, a higher stiffness improvement effect was monitored in the biopolymer-treated sandy soils with a higher gravimetric concentration. The results of this study may be used to estimate the stiffness improvement effects of sandy soils treated with biopolymer solutions with the drying process.