• Title/Summary/Keyword: soil electric conductivity

Search Result 120, Processing Time 0.021 seconds

토양안정제에 의한 폐기물 매립장 차수재의 수리전도도 특성

  • 임은진;이재영;이복일
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.390-393
    • /
    • 2002
  • Many researchers have studied for the barrier liner in the landfill that is mixed with clay mineral, native soils and solidified agent. However, they have a littel but problems for safety construction and maintenance as a bottom liner systems in the landfill. In this paper the authors studied the effects on hydraulic conductivity by electric-chemical ion-exchange agent that is a soil stabilization agent(Sulphonated Oil), The application of the soil stabilization agent to meet the hydraulic conductivity of clay liner in landfill is possible if the additive quantity and a proper reaction time is determined relevantly in the laboratory test.

  • PDF

Soil-Environmental Factors Involved in the Development of Root Rot/Vine on Cucurbits Caused by Monosporascus cannonballus

  • Kwon, Mi-Kyung;Hong, Jeong-Rae;Kim, Yong-Hwan;Kim, Ki-Chung
    • The Plant Pathology Journal
    • /
    • v.17 no.1
    • /
    • pp.45-51
    • /
    • 2001
  • A root rot/vine decline disease occurred naturally on bottle gourd-stocked watermelon, melon, oriental melon and squash grown in greenhouses, but not on these plants grown in fields. Self-rooted watermelon, cucumber, pumpkin and luffa were also proven to be hosts of the pathogen by artificial inoculation in this experiment. The pathogen was identified as Monosporascus cannonballus by comparing microscopic characteristics of fungal structures with those of previously identified fungal strains. Our field investigations showed that the temperature and electric conductivity of soil in infected greenhouses were higher and the soil moisture content was lower than in noninfected greenhouses. To investigate soil-environmental factors affecting disease development, greenhouse trials and inoculation experiments were conducted. The host plants inoculated and grown under conditions of high soil temperature and electrical conductivity ($35\pm2^{\circ}$, 3.2-3.5 mS) and with low soil moisture content (pF 3.0-4.5) were most severely damaged by the fungal disease. Since plants growing in greenhouses ae usually exposed to such environmental conditions, this may be the reason why the monosporascus root rot/vine decline disease has occurred only on cucurbits cultivated in greenhouses but not in field conditions.

  • PDF

A study on electric current variation characteristics during Electrokinetic remediation of kaolinite contaminated by Pb (납으로 오염된 카올린의 Electrokinetic 정화기법 적용시 전류변화 특성에 관한 연구)

  • 김정환;한상재;김수삼
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.302-306
    • /
    • 2000
  • In case of applying electrokinetic remediation, magnitude of electric current is one of major factors for estimation of contaminant transport. In practice, electric current provide determination of electric conductivity based on specimen resistance. Electric current variation is produced during Electrokinetic remediation test. Electric current is decreased by expotential function according to time in condition of constant voltage. This can be interpreted as precipitation effect by OH$^{-10}$ generation in a cathode.

  • PDF

Experimental investigation on the variation of thermal conductivity of soils with effective stress, porosity, and water saturation

  • Lee, So-Jung;Kim, Kyoung-Yul;Choi, Jung-Chan;Kwon, Tae-Hyuk
    • Geomechanics and Engineering
    • /
    • v.11 no.6
    • /
    • pp.771-785
    • /
    • 2016
  • The thermal conductivity of soils is an important property in energy-related geotechnical structures, such as underground heat pumps and underground electric power cable tunnels. This study explores the effects of geotechnical engineering properties on the thermal conductivity of soils. The thermal conductivities of quartz sands and Korean weathered silty sands were documented via a series of laboratory experiments, and its variations with effective stress, porosity, and water saturation were examined. While thermal conductivity was found to increase with an increase in the effective stress and water saturation and with a decrease in porosity, replacing air by water in pores the most predominantly enhanced the thermal conductivity by almost one order of magnitude. In addition, we have suggested an improved model for thermal conductivity prediction, based on water saturation, dry thermal conductivity, saturated thermal conductivity, and a fitting parameter that represents the curvature of the thermal conductivity-water saturation relation.

Numerical Calculation for Impedance of Horizontal Ground Electrode for Information and Communication Facilities with Considering Characteristics of Permittivity in Soil (토양의 유전율 특성을 고려한 정보통신설비용 수평접지전극의 임피던스 계산)

  • Ahn, Chang-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.245-251
    • /
    • 2013
  • An impedance of ground electrode for information and communication facilities has a significant relationship with the electrical characteristics of soil where the ground electrode is buried. Especially, the impedance of ground electrode is directly affected by the characteristics of permittivity and conductivity in soil as a function of a frequency of an applied electric field. The program based on the electromagnetic field model was developed in MATLAB. Because both permittivity and conductivity can not be modified in commercial programs. The permittivity of soil was applied with the Debye equation which is a model of dielectric relaxation. And the empirical equation of the conductivity in soil was quoted in other paper. In order to confirm the reliability of proposed program, the impedance measurement of ground electrode was carried out, which were compared with the results of simulation in commercial program. In result, it was confirmed that the impedance and phase different simulated by appling the characteristics of permittivity and conductivity in soil are in good agreement with the measured values than results of NEC.

Estimating spatial distribution of water quality in landfill site

  • Yoon Hee-Sung;Lee Kang-Kun;Lee Seong-Soon;Lee Jin-Yong;Kim Jong-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.391-393
    • /
    • 2006
  • In this study, the performance of artificial neural network (ANN) models for estimating spatial distribution of water quality was evaluated using electric conductivity (EC) values in landfill site. For the ANN model development, feedforward neural networks and backpropagation algorithm with gradient descent method were used. In Test 1, the interpolation ability of the ANN model was evaluated. Results of the ANN model were more precise than those of the Kriging model. In Test 2, spatial distributions of EC values were predicted using precipitation data. Results seemed to be reasonable, however, they showed a limitation of ANN models in extrapolations.

  • PDF

Effects of Irrigation Water Quality on the Growth of Paddy Rice along the Downstream of Nakdong River (낙동강(洛東江) 하류수계(下流水系) 관개수질(灌漑水質)이 벼 생육(生育)에 미치는 영향(影響))

  • Lee, Chun-Hee;Ha, Ho-Sung;Lee, Han-Seng;Jeon, Seong-Geon;Jang, Sun-Duk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.1
    • /
    • pp.72-77
    • /
    • 1985
  • This study was performed to obtain some basic informations about the effects of irrigation water on the growth of rice plant. The water quality was surveyed at six pumping stations from the Nam river tributary to the downstream of Nakdong river, and sampling sites of soil and plant were five paddy fields near-by each station during rice growing periods in 1983. 1. Average value of COD was 5.1-7.1 ppm at 2 sites of the Nam river tributary, 11.4 ppm at 1 site of the midstream and 9.1-13.4 ppm at 3 sites of the downstream of Nakdong river. 2. The relationships between irrigation water and soil were $r=0.98^{**}$ for EC and $r=0.91^*$ for SAR, but the rest components did not. 3. Root activity of rice plant was low tendency as go by go the downstream of Nakdong river, and it was related to dry matter of rice plant ($r=0.62^{**}$), SAR ($r=-0.67^{**}$), and EC ($r=-0.62^{**}$) of soils.

  • PDF

Soil Texture and Desalination after Land Reclamation on the West Coast of Korea (서해안 간척지 토성과 탈염)

  • 민병미;김준호
    • The Korean Journal of Ecology
    • /
    • v.20 no.2
    • /
    • pp.133-143
    • /
    • 1997
  • From 1984 to 1989 reclaimed coastal lands in Choongnam Province of the western coast of Korea were studied for soil texture at three sites(Daeho, Hyundai A and Hyundai B) and for desalination one site(Hyundai B). The soil textures of varied sites in Hyundai A were horizontally similar and composed of 39-40% clay, 40-49% silt and 8-14% sand. But those in Da돼 and Hyundai B differed horizontally in the same area and vertically at the same site. Soil texures of Da돼 were composed of 15-17% clay, 30-45% silt and 40-55% sand and those of Hyundai B were composed of 22-45% clay, 26-49% silt and 17-31% sand. The measured electrical conductivity(EC), which represents whole salt content of the reclaimed soil, decreased year by year. The vertical distribution of the EC changed temporally and spatially in the upper zone above a 50 cm depth but not in The lower zone below a 50 cm depth. The EC valus of the soil were inversely proportional to the magnitued of annual precipitation, evaporation and the numbers of rainy days with r equalling -0.97. But the annual decrease of the EC was directly proportional to climatic factors with r=0.7. Salt in the reclaimed land was leached out by the percolative action of surplus rain water, or moved up by evaporation and carried away by running rain water. The running out of the salt on the soil surface was most efficiently carried out over 10 mm precipitation per day.

  • PDF

Factors Affecting the Electrical Properties of Bentonite Slurry (벤토나이트 슬러리의 전기적 특성에 대한 영향인자 분석)

  • Yoo, Dong-Ju;Oh, Myoung-Hak;Kim, Yong-Sung;Park, Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.21-32
    • /
    • 2006
  • Factors affecting the electrical properties of bentonite slurry were identified and electric conduction mechanism in slurry was examined. Electrical conductivity of bentonite and soil-bentonite slurry linearly increases with the bentonite content. Test result indicated that the change In electrical conductivity of slurry was mainly caused by dissolved cations from bentonite particles. The relationship between electrical conductivity and bentonite content was affected by the initial electrical conductivity of slurry solution and fine content in soil-bentonite mixture. Such influences were evaluated and the calibrated relationships were suggested. Based on the suggested relationship between electrical conductivity and bentonite content, bentonite content in various bentonite and soil-bentonite slurry can be quantitatively evaluated by using electrical conductivity measurement method.

Portable Soil pH Sensor Using ISFET Electrode

  • Hong, Youngsin;Chung, Sun-Ok;Park, Jongwon;Hong, Youngki
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.1
    • /
    • pp.49-57
    • /
    • 2022
  • Fertilizers have long been used to increase crop yields; however, farmers are still having difficulties in managing fertilizers for growing crops as well as economic problems. The conventional method of soil sampling and laboratory analysis to determine soil pH is time consuming and costly; therefore, a portable pH sensor is developed to characterize spatial or temporal variability within fields via rapid and dense data acquisition. The portable pH sensor comprises an electrode unit, a portable console, and a USB connector. The soil water content (SWC) and electrical conductivity (EC) affect the electrical resistance of soil. An artificial test soil is performed to evaluate the effect of SWC and EC on soil pH. The test results show that stable pH measurements are achieved at SWCs greater than 20 mL (16.3%). Regardless of the SWC, the electric potential difference (EPD) remains at 2.5 g of NaCl. As the EC increases in the soil samples, the EPD increases.