• 제목/요약/키워드: soil effects

검색결과 4,642건 처리시간 0.029초

경사밭 감자(Solanum tuberosum L.) 재배 시 휴한기 호밀(Secale cereal L.) 재배에 따른 토양 특성 및 토양 보전 효과 (Cover Crop Effects of Winter Rye (Secale cereale L.) on Soil Characteristics and Conservation in Potato (Solanum tuberosum L.) Slope Field)

  • 백계령;이정태
    • 한국환경과학회지
    • /
    • 제30권12호
    • /
    • pp.1015-1025
    • /
    • 2021
  • Our research work aimed to evaluate cover crop effects of winter rye on soil characteristics, soil conservation, and yield productivities on potato fields with 15% slope during a fallowed period. There were two controls of bared field without any cultivation and conventional potato cultivation without winter rye. Potato cultivation increased soil pH, organic matter, available phosphate, and exchangeable cation regardless of cover crop cultivation. Sub-soil, particularly, all components of soil chemical properties showed higher value in winter rye cultivation than conventional cultivation. Higher soil density was observed on cover crop cultivation than conventional cultivation resulting from root residues of the cover crop both topsoil and subsoil. Cover crop residues positively affected plant growth and reduced the amount of soil erosion by holding the soil. Although severe soil erosion was seen in conventional cultivation, winter rye cultivation declined soil erosion by 47% during the fallow period on potato slope fields. Distinct soil bacterial communities were detected among treatments and some OTU(Operational Taxonomic Unit)s showed significantly higher abundance in winter rye treatment. Total yield and commercial rate demonstrated no significant differences while higher tuber phosphate, K+, and Mg2+ contents were observed in winter rye cultivation.

Effects of the Applications of Chitin and Chitosan on Soil Organisms

  • Eo, Jinu;Kim, Myung-Hyun;Choi, Soon-Kun;Bang, Hea-Son;Park, Kee-Choon
    • 한국토양비료학회지
    • /
    • 제48권2호
    • /
    • pp.132-137
    • /
    • 2015
  • Effects of chitin and chitosan treatments on soil microorganisms and the mesofauna were investigated in a microcosm and a fumigated field experiment. Responses of microorganisms were determined using microbial phospholipid fatty acid (PLFA) analysis, whereas responses of the mesofauna were measured in terms of the abundances of nematodes and microarthropods. Soil nitrate concentration increased on the application of chitin. Overall, chitin promoted bacterial and fungal abundance, leading to an increase in abundance of free-living soil nematodes that feed on decomposers. The ratio of saturated to unsaturated fatty acids was highest in the chitin-treated soil. Chitosan had a minimal effect on the abundance of microorganisms; however, it reduced the abundance of collembolans in the microcosm experiment. These results indicate that the application of chitin has beneficial effects on the supply of nutrients and promotion of the abundance of soil organisms.

Effects of Dynamic Soil Behaviour on Wave-Induced Seabed Response

  • Cha, D.H;Jeng, D.S;Rahman, M.S.;Sekiguchi, H.;Zen, K.;Yamazaki, H.
    • 한국해양공학회지
    • /
    • 제16권5호
    • /
    • pp.21-33
    • /
    • 2002
  • In this paper, an analytical solution for the wave-induced seabed response in a porous seabed is derived. Unlike previous investigations with quasi-static soil behaviour, dynamic soil behaviour is considered in the new solution. The basic one-dimensional framework proposed by Zienkiewicz et al (1980) is extended to two-dimensional cases. Based on the analytical solution derived, the effects of dynamic soil behaviour on the wave-induced seabed response are examined. The boundary of quasi-static soil behaviour and dynamic soil behaviour is clarified, and formulated for engineering practice.

Effects of Dynamic Soil Behaviour on Wave-Induced Seabed Response

  • Cha, D.H.;Jeng, D.S.;Rahman, M.S.;Sekiguchi, H.;Zen, K.;Yamazaki, H.
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • 제5권1호
    • /
    • pp.1-13
    • /
    • 2002
  • In this paper, an analytical solution for the wave-induced seabed response in a porous seabed is derived. Unlike previous investigations with quasi-static soil behaviour, dynamic soil behaviour is considered in the new solution. The basic one-dimensional framework proposed by Zienkiewicz et al (1980) is extended to two-dimensional cases. Based on the analytical solution derived, the effects of dynamic soil behaviour on the wave-induced seabed response are examined. The boundary of quasi-static soil behaviour and dynamic soil behaviour is clarified, and formulated for engineering practice.

  • PDF

Shifting Cultivation Effects on Soil Environment in Upland Watershed of Bangladesh

  • Haque, S.M. Sirajul;Gupta, Sanatan Das;Miah, Sohag
    • Journal of Forest and Environmental Science
    • /
    • 제30권2호
    • /
    • pp.179-188
    • /
    • 2014
  • This research reports the effects of shifting cultivation on soil environment collecting samples from 0-5 cm soil depth from five locations viz. at Burburichhara, Maichchari, Longadu, Sukurchhari and Muralipara in Rangamati district of Chittagong Hill Tracts (CHTs). Soil analyses showed that fungal and bacterial population, microbial respiration and active microbial biomass, maximum water holding capacity, conductivity and moisture contents were significantly (at least $p{\leq}0.05$) lower in shifting cultivated soil compared to adjacent mixed tree plantations at all the sites. On an average in soils of 5 different shifting cultivated lands fungal population was $1.33{\times}10^5$ CFU/g dry soil and bacterial population $1.80{\times}10^7$ CFU/g dry soil and in mixed plantations fungal population was $1.70{\times}10^5$ and bacterial population $2.51{\times}10^7$ CFU/g dry soil. Organic matter and exchangeable Ca and Mg contents were significantly (at least $p{\leq}0.05$) lower and bulk density significantly (at least $p{\leq}0.05$) higher in shifting cultivated land in most of the locations compared to adjacent mixed tree plantations. Ratios of microbial respiration and organic carbon as well as active microbial biomass and organic carbon were distinctly lower and pH higher at 3 locations in shifting cultivated soils compared to mixed plantations. Findings of various soil properties, therefore, suggest that shifting cultivation has deteriorating effects on soil environment.

Changes in Growth and Quality of Melon (Cucumis melo L.) and in Soil Nitrogen Forms due to Organic Fertilizer Application

  • Park, Yang Ho;Seo, Beom Seok
    • 한국토양비료학회지
    • /
    • 제45권6호
    • /
    • pp.1009-1016
    • /
    • 2012
  • The purpose of this study was to determine the effects of organic fertilizers on soil properties and growth and quality of melon. Organic fertilizer was applied in soil at the rate of 0, 0.5, 1, 2N according to Rural Development Administration guideline in Korea. The fertilizer had no effects on plant growth-rate parameters, including plant height, leaf number, and leaf size. There were minor effects on the fruit quality parameters such as fruit weight, fruit length, fruit width, placenta and seed weights, sugar content, and starch content. Ascorbic acid level was decreased as fertilizer level was increased. The level of nitrate in groundwater increased with increased levels of N.

Backfill and subsoil interaction effects on seismic behavior of a cantilever wall

  • Cakir, Tufan
    • Geomechanics and Engineering
    • /
    • 제6권2호
    • /
    • pp.117-138
    • /
    • 2014
  • The main focus of the current study is to evaluate the dynamic behavior of a cantilever retaining wall considering backfill and soil/foundation interaction effects. For this purpose, a three-dimensional finite element model (FEM) with viscous boundary is developed to investigate the seismic response of the cantilever wall. To demonstrate the validity of the FEM, analytical examinations are carried out by using modal analysis technique. The model verification is accomplished by comparing its predictions to results from analytical method with satisfactory agreement. The method is then employed to further investigate parametrically the effects of not only backfill but also soil/foundation interactions. By means of changing the soil properties, some comparisons are made on lateral displacements and stress responses. It is concluded that the lateral displacements and stresses in the wall are remarkably affected by backfill and subsoil interactions, and the dynamic behavior of the cantilever retaining wall is highly sensitive to mechanical properties of the soil material.

Prosopis juliflora invasion and environmental factors on density of soil seed bank in Afar Region, Northeast Ethiopia

  • Shiferaw, Wakshum;Bekele, Tamrat;Demissew, Sebsebe;Aynekulu, Ermias
    • Journal of Ecology and Environment
    • /
    • 제43권4호
    • /
    • pp.400-420
    • /
    • 2019
  • The aims of the study were to analyze (1) the effects of Prosopis juliflora (Prosopis) on the spatial distribution and soil seed banks (SSB) diversity and density, (2) the effects of environmental factors on SSB diversity and density (number of seeds in the soil per unit area), and (3) the effects of animal fecal droppings on SSB diversity, density, and dispersal. Aboveground vegetation data were collected from different Prosopis-infested habitats from quadrats (20 × 20 m) in Prosopis thickets, Prosopis + native species stand, non-invaded woodlands, and open grazing lands. In each Prosopis-infested habitats, soil samples were collected from the litter layer and three successive soil layer, i.e., 0-3 cm, 3-6 cm, and 6-9 cm. Seeds from soil samples and animal fecal matter were separated in the green house using the seedling emergence technique. Invasion of Prosopis had significant effects on the soil seed bank diversity. Results revealed that the mean value of the Shannon diversity of non-invaded woodlands was being higher by 19.2%, 18.5%, and 11.0% than Prosopis thickets; Prosopis + native species stand and open grazing lands, respectively. The seed diversity and richness, recovered from 6-9-cm-deep layer were the highest. On the other hand, the density of Prosopis seeds was the highest in the litter layer. About 156 of seeds/kg (92.9%) of seeds were germinated from cattle fecal matter. However, in a small proportion of seedlings, 12 of seeds/kg (7.1%) were germinated from shot fecal matter. Thus, as the seeds in the soil were low in the study areas, in situ and ex situ conservation of original plants and reseeding of persistent grass species such as Cynodon dactylon, Cenchrus ciliaris, Chrysopogon plumulosus, and Brachiaria ramosa are recommended.

Soil-structure interaction effects on seismic behavior of a hyperbolic cooling tower using three-parameter Vlasov foundation model

  • Karakas, Ali I.;Ozgan, Korhan;Daloglu, Ayse T.
    • Earthquakes and Structures
    • /
    • 제14권1호
    • /
    • pp.85-94
    • /
    • 2018
  • The paper focuses on the seismic responses of a hyperbolic cooling tower resting on soil foundation represented by the three-parameter Vlasov elastic soil model. The three-parameter soil model eliminates the necessity of field testing to determine soil parameters such as reaction modulus and shear parameter. These parameters are calculated using an iterative procedure depending on the soil surface vertical deformation profile in the model. The soil and tower system are modeled in SAP2000 structural analysis program using a computing tool coded in MATLAB. The tool provides a two-way data transfer between SAP2000 and MATLAB with the help of Open Application Programming Interface (OAPI) feature of SAP2000. The response spectrum analyses of the tower system with circular V-shaped supporting columns and annular raft foundation on elastic soil are conducted thanks to the coded tool. The shell and column forces and displacements are presented for different soil conditions and fixed raft base condition to investigate the effects of soil-structure interaction. Numerical results indicate that the flexibility of soil foundation leads to an increase in displacements but a decrease in shell membrane and column forces. Therefore, it can be stated that the consideration of soil-structure interaction in the seismic response analysis of the cooling tower system provides an economical design process.

산불이 산림토양의 이화학적 성질에 미치는 영향 (Fire Effects on Soil Physical and Chemical Properties following the Forest Fire in Kosung)

  • 이원규;김춘식;차순형;김영걸;변재경;구교상;박재욱
    • The Korean Journal of Ecology
    • /
    • 제20권3호
    • /
    • pp.157-162
    • /
    • 1997
  • Changes on soil physical and chemical properties following the forest fire in Kosung area in Kangwon province were examined. Twenty seven sampling plots[16 burned (8 low intensity fire, 8 high intensity fire) and 11 unburned plots] from Pinus densiflora community were chosen and soil samples from three depths(0-5, 5-15, 15-25 cm) under the forest floor were collected. Forest fire in the area affected soil chemical properties. Soil pH, available phosphorus, base saturation, K, Ca, and Mg on the surface soil(0-5cm) in the burned areas compared with the unburned areas were increased, while soil properties on the subsurface soil(5-25 cm) were not changed. Organic matter, total nitrogen, available phosphorus, and exchangeable cations following the high in tensity fire on the surface soil were generally lower than those in the low intensity fire areas. This indicates that these nutrients on high intensity fire areas may be volatilized. The results suggest that the fire effects on soil chemical properties were confined mainly to the surface soil and were different between the high and the low intensity fire types.

  • PDF