• Title/Summary/Keyword: soil ecosystem

Search Result 573, Processing Time 0.028 seconds

The Comparative Studies on the Terrestrial Insect Diversity in Protected Horticulture Complex and Paddy Wetland (시설원예단지와 논습지의 육상곤충 다양성 비교분석)

  • Son, Jin-Kwan;Kong, Min-Jae;Kang, Dong-Hyeon;Kang, Bang-hun;Yun, Sung-Wook;Lee, Si-Young
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.386-393
    • /
    • 2016
  • Agricultural ecosystem is recognized as a space for providing a variety of services, in addition to the food production that it originally encompassed, such as water purification, biological habitat, air purification, soil conservation, and landscape development. The construction of greenhouses in agricultural landscapes can cause deterioration of ecosystem services because of the increase of impermeable area and loss of biological habitats. This study aimed to compare insect diversity between different types of constructed greenhouses and paddy ecosystems. The target study area was selected by considering the distribution status of horticultural complexes and was classified as Single Vinyl Greenhouse, Multi Vinyl Greenhouse or Glass Greenhouse and they were compared with four paddies. The study locations were in Gu-Mi, Bu-Yeo, Ginje and Jin-Ju. A total of 2,333 individual insects belonging to 9 orders, 38 families, 76 genus, and 80 species were collected. The composition of orders was Hemiptera (22.37%), Coleoptera (18.42%), Hymenoptera (14.47%), Orthoptera (11.84%), and Diptera (10.53%). The average number of collected species were in the order Paddy (39.38 species) > Single Vinyl Greenhouse (35.50 species) > Multi Vinyl Greenhouse (22.50 species) > Glass Greenhouse (24.00 species). The Diversity Index (H') was Paddy (4.76) > Single Vinyl Greenhouse (4.57) > Multi Vinyl Greenhouse (4.12), and Glass Greenhouse (4.12). The Richness Index (RI) was Paddy (7.72) and Single Vinyl Greenhouse (7.03) > Multi Vinyl Greenhouse (4.99) and Glass Greenhouse (5.32). From our results, it can be seen that the biological diversity features of insects decreased when greenhouses are constructed.However, Single Vinyl Greenhouse is noted to promote insect diversity more than that by Multi Vinyl Greenhouse and Glass Greenhouse. Hence, when constructing greenhouses, it is necessary to consider insect habitat to conserve insect diversity.

Screening of Herbicidal Activity from Aqueous Extracts of Coronopus didymus (냄새냉이 수용성추출물의 제초활성 탐색)

  • Kim, Tae-Keun;Song, Jin-Young;Kang, Jeong-Hwan;Yang, Young-Hoan;Kim, Hyoun-Chol;Song, Chang-Khil
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.1
    • /
    • pp.73-85
    • /
    • 2016
  • This study was carried out to allelopathic effects of aqueous extracts on Coronopus didymus in order to investigate the competitive dominant in plant ecosystem and possibility application in natural herbicide. Number of species and species diversity for close to patch of C. didymus was decreased gradually site #1 (7, 1.76), site #2 (5, 1.34) and site #3 (5, 1.25). It was generally decreased the relative germination ratio (r=-0.731, p<0.01), the mean germination time, the relative elongation ratio (r=-571, p<0.01, r=-0.730, p<0.01), the relative fresh weight (r=-0.743, p<0.01), development of root hairs of receptor plants by concentration of the aqueous extracts from C. didymu. But they were different from the growing regions, the kind of receptor plants and the treatment of the aqueous extracts. Especially, it was differently effected among growing regions that inhibited more radicle than shoot by the aqueous extracts concentration of C. didymus. Total phenolic compound in the aqueous extracts of C. didymus analyzed about $23.0{\pm}1.1mg/g$. Total phenolic compounds of soil in survey area was increased gradually site #1 ($0.072{\pm}0.002mg/g$), site #2 ($0.082{\pm}0.003mg/g$) and site #3 ($0.092{\pm}0.004 mg/g$). We think that the aqueous extracts of C. didymu showed allelopathic effects on other plants. Therefore, C. didymu hold the competitive dominant of plant ecosystem in Jeju Island and possibility application of natural herbicide.

A review of factors that regulate extracellular enzyme activity in wetland soils (습지 토양 내 체외효소 활성도를 조절하는 인자에 대한 고찰)

  • Kim, Haryun
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.97-107
    • /
    • 2015
  • Wetlands constitute a transitional zone between terrestrial and aquatic ecosystems and have unique characteristics such as frequent inundation, inflow of nutrients from terrestrial ecosystems, presence of plants adapted to grow in water, and soil that is occasionally oxygen deficient due to saturation. These characteristics and the presence of vegetation determine physical and chemical properties that affect decomposition rates of organic matter (OM). Decomposition of OM is associated with activities of various extracellular enzymes (EE) produced by bacteria and fungi. Extracellular enzymes convert macromolecules to simple compounds such as labile organic carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) that can be easily taken up by microbes and plants. Therefore, the enzymatic approach is helpful to understand the decomposition rates of OM and nutrient cycling in wetland soils. This paper reviews the physical and biogeochemical factors that regulate extracellular enzyme activities (EEa) in wetland soils, including those of ${\beta}$-glucosidase, ${\beta}$-N-acetylglucosaminidase, phosphatase, arylsulfatase, and phenol oxidase that decompose organic matter and release C, N, P, and S nutrients for microbial and plant growths. Effects of pH, water table, and particle size of OM on EEa were not significantly different among sites, whereas the influence of temperature on EEa varied depending on microbial acclimation to extreme temperatures. Addition of C, N, or P affected EEa differently depending on the nutrient state, C:N ratio, limiting factors, and types of enzymes of wetland soils. Substrate quality influenced EEa more significantly than did other factors. Also, drainage of wetland and increased temperature due to global climate change can stimulate phenol oxidase activity, and anthropogenic N deposition can enhance the hydrolytic EEa; these effects increase OM decomposition rates and emissions of $CO_2$ and $CH_4$ from wetland systems. The researches on the relationship between microbial structures and EE functions, and environmental factors controlling EEa can be helpful to manipulate wetland ecosystems for treating pollutants and to monitor wetland ecosystem services.

Carbon Budget in Campus of the National Institute of Ecology (국립생태원 캠퍼스 내 주요 식생의 탄소수지)

  • Kim, Gyung Soon;Lim, Yun Kyung;An, Ji Hong;Lee, Jae Seok;Lee, Chang Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.167-175
    • /
    • 2014
  • This study was conducted to quantify a carbon budget of major vegetation types established in the campus of the National Institute of Ecology (NIE). Carbon budget was measured for Pinus thunbergii and Castanea crenata stands as the existing vegetation. Net Primary Productivity (NPP) was determined by applying allometric method and soil respiration was measured by EGM-4. Heterotrophic respiration was calculated as 55% of total respiration based on the existing results. Net Ecosystem Production (NEP) was determined by the difference between NPP and heterotrophic respiration (HR). NPPs of P. thunbergii and C. crenata stands were shown in $4.9ton\;C\;ha^{-1}yr^{-1}$ and $5.3ton\;C\;ha^{-1}yr^{-1}$, respectively. Heterotrophic respirations of P. thunbergii and C. crenata stands were shown in $2.4ton\;C\;ha^{-1}yr^{-1}$ and $3.5ton\;C\;ha^{-1}yr^{-1}$, respectively. NEPs of P. thunbergii and C. crenata stands were shown in $2.5ton\;C\;ha^{-1}yr^{-1}$ and $1.8ton\;C\;ha^{-1}yr^{-1}$, respectively. Carbon absorption capacity for the whole set of vegetation types established in the NIE was estimated by applying NEP indices obtained from current study and extrapolating NEP indices from existing studies. The value was shown in $147.6ton\;C\;ha^{-1}yr^{-1}$ and it was calculated as $541.2ton\;CO_2ha^{-1}yr^{-1}$ converted into $CO_2$. This function corresponds to 62% of carbon emission from energy that NIE uses for operation of various facilities including the glass domes known in Ecorium. This carbon offset capacity corresponds to about five times of them of the whole national territory of Korea and the representative rural area, Seocheongun. Considered the fact that ongoing climate change was originated from imbalance of carbon budget at the global level, it is expected that evaluation on carbon budget in the spatial dimension reflected land use pattern could provide us baseline information being required to solve fundamentally climate change problem.

A Study on Ecological Characteristics and Changes of Vegetation in Hamyangsangrim (함양상림 식생의 생태적 특성 변화 연구)

  • Kim, Dong-Wook;Lee, Seung-Joo;Lee, Soo-Dong;Kim, Ji-Seok;Han, Bong-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.4
    • /
    • pp.537-549
    • /
    • 2012
  • The purpose of this study was to provide data for the basic research to found the effective conservation and management plan for the Hamyangsangrim designated as Natural Monument No. 154 and surround areas by analyzing the ecological characteristics such as landuse and actual vegetation, plant community structure, soil chemical property and also to identify the tendency of the ecosystem changes through comparison with past studies. According to analysis the results, the landuse and actual vegetation of survey site was classified as 8 types which were forest, artificial greenspace, plaza and open-space, bare ground and the pavement, water bodies, facilities, agricultural land and etc.. It was also categorized as 38 types according to detailed characteristic. 15 kinds of forest vegetation community types comprising silva were classified among them. The changes of actual vegetation showed little variation that the Quercus serrata-Carpinus tschonoskii forest was the most widely distributed in 2003(forest area ratio is 48.3%) and 2010(forest area ratio is 48.1%), whereas, the Quercus serrata forest declined a more dramatic from 11.6% to 23.2%. The Quercus serrata-Carpinus tschonoskii forest increased sharply(11.6% ${\rightarrow}$ 23.2%) and also the Quercus serrata-Zelkova serrata forest increased steadily(2.2% ${\rightarrow}$ 7.9%). The agricultural land around forest was transformed into artificial green zone. Moreover, water bodies, bare ground and the pavement of areas have increased. In addition, the urbanized area has decreased because the damaged areas inside forest have been restored to the woodlands. According to the result of typical 6 types vegetation communities change, the middle layer trees grew up to the canopy layer trees and was formed the canopy layer structure. The middle layer trees expanded their forces widely. Also new species appeared. And the shrub individuals also more dramatically increased due to the growth of shrubs. The force of Quercus serrata declined as well. However the force of Carpinus tschonoskii and Zelkova serrata expanded and increased in the forest. It must be the result of the ecological vegetation succession and environmentally soundly health recovery by influence of the projects of forest surrounding environment improvement and limitation of access to forest have managed and maintained since 2003. Those sorts of changes seems to be going to develop continuously. In the future Carpinus tschonoskii and Zelkova serrata will not be only codominant in the canopy layer but also Carpinus Tschonoskii, Zelkova serrata, Meliosma myriantha, Sapium japonicum. Styrax obassia and Acer pseudo-sieboldianum will be codominant in the middle layer. As a result, the forest's codominance species are going to be changed such like that.

A Study on the Change and Management of Historical Landscape Forest of Taeneung, Joseon Dynasty Royal Tomb, Seoul, Korea (조선왕릉 태릉(泰陵)의 역사경관림 변화와 관리방안)

  • Kim, Myoung-Sin;Lee, Kyong-Jae;Kim, Jong-Yup;Hur, Ji-Yeon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.2
    • /
    • pp.56-72
    • /
    • 2015
  • This study area for this research was the Taereung of the 2009 World Heritage-listed Royal Tombs of the Joseon Dynasty. The Taereung space was divided into that of the royal tomb space, religious service space, transposition space and entry space. The original vegetation is assumed to have been planted at the right, left and backside of the tomb based on historical research literature. Regarding the original vegetation landscape of Taeneung, it was assumed that Pinus densiflora was distributed around the tomb lines and tomb space, Pinus densiflora was distributed in the religion services space and transposition and Alnus japonica was distributed in the entry space. By the present status of vegetation in Taeneung, the Pinus densiflora forest was the widest area with 50.3% with the broadleaf forest at 33.7%. Quercus aliena, Quercus acutissima, and Quercus mongolica were the main species found in Taeneung. The planting area was 7.9% and Pinus densiflora were the main species planted. To analyze the plant community structure of Taeneung, 108 plots were set and divided into four spaces. The importance of the percentage of those districts was analyzed on a spatial basis and it was found that the current dominant species of the tomb space was Pinus densiflora. However, as Pinus densiflora began dying out, the power of Quercus acutissima increased and an ecological succession from the Pinus densiflora forest to Quercus aliena forest was made. In the spaces of religious services and transposition, Pinus densiflora was decreasing and Quercus spp. was expanded. In the space of entry, the dominant species were Pinus densiflora and Quercus aliena, Pinus densiflora and Quercus aliena. As soil of this area is argillaceous, Pinus densiflora is expected to disappear in the end. The prior vegetation(assumed) and present vegetation of Taeneung were compared and analyzed and a goal of vegetation management and the way in which to manage vegetation were suggested. The goal of vegetation landscape management was to analyze ecological characteristics and vegetation changes, maintain and restore a landscape suitable for historical landscape forests by space. About the space of the tomb, Pinus densiflora forests and Pinus densiflora planting zones forests should be maintained and there should be efforts to restore and manage the Pinus densiflora forests, instead of the Quercus spp. forests. About the space of religious services, Pinus densiflora forests and Pinus densiflora planting zones should be maintained and managed and there should be efforts to restore and manage Pinus densiflora forests to replace Quercus spp. Pinus densiflora forests in the space of transposition should be maintained and managed and Pinus densiflora forests should be restored to replace Quercus spp. trees. Alnus japonica forests should be restored in the space of entry.

The long-term decay rate and nutrient dynamics during leaf litter decomposition of Pinus densiflora and Pinus thunbergii (한반도 중부지역 조림지 소나무와 곰솔의 장기적 낙엽 분해율 및 분해과정에 따른 영양염류 동태변화)

  • Lee, Il-hwan;Jo, Soo-un;Lee, Young-sang;Won, Ho-yeon
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.3
    • /
    • pp.374-382
    • /
    • 2021
  • In the present study, we analyzed the decay rate and nutrient dynamics during leaf litter decomposition of Pinus densiflora and Pinus thunbergii in Gongju for 60 months, from 2014 to 2019. P. thunbergii leaf litter decomposed faster than that of P. densiflora. The decay constant of P. densiflora and P. thunbergii leaf litter after 60 months was 3.02 and 3.59, respectively. The initial C/N ratio of P. densiflora and P. thunbergii leaf litter were 14.4 and 14.5, respectively. After 60 months, C/N ratio of decomposing P. densiflora and P. thunbergii leaf litter decreased to 2.26 and 3.0, respectively. The initial C/P ratio of P. densiflora and P. thunbergii leaf litter were 144.1 and 111.3. After 60 months elapsed, the C/P ratio of decomposing P. densiflora and P. thunbergii leaf litter decreased to 40.1 and 45.8, respectively. After 60 months, the percentage of the remaining N, P, K, Ca, and Mg in decomposing P. densiflora leaf litter was 231.08, 130.13, 35.68, 48.58, and 36.03%, respectively. After 60 months, the percentage of the remaining N, P, K, Ca, and Mg in decomposing P. thunbergii leaf litter was 143.91, 74.02, 28.59, 45.08, and 44.99%, respectively. The findings of the present study provide an insight into the forest ecosystem function of coniferous forests through the analysis of the amount of nutrient transfer into the soil through a long-term decomposition process; this information is intended to be used as basic data for preparing counter measures for future climate and ecosystem changes.

The Suggestion for Classification of Biotope Type for Nationwide Application (전국적 적용을 위한 비오톱유형분류 제안)

  • Choi, Il-Ki;Oh, Choong-Hyeon;Lee, Eun-Heui
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.6
    • /
    • pp.666-678
    • /
    • 2008
  • The needs for drawing up of biotope map is rapidly spreaded over each local government recently in Korea, according as enhancing of interest about biotope, which is recognized to practical instrument for concretely being able to considering natural environment and ecosystem on all sorts of development plan. However, there are not yet the standard suggestion on biotope types and classification systems and biotope classification criteria. Therefore, each other methodologies are applied to each of local autonomies. First, under such critical mind the biotope types and classification systems were drafted by a review on biotope types, biotope classification systems, and biotope classification criteria of the preceded case studies until now at the inside and outside of the country. And then the purpose of this study is to derive biotope types and biotope classification systems applicable to the whole Korean region through continual feed back such as field surveys in selected representative areas and consultations. As a result of reviewing the case examples, first, the biotope classification systems were mixed two steps system with three steps system and those were composed mostly of the structure of two steps: large and small. Second, land-use, soil pavement ratio, green cover ratio, and vegetation usually were applied to the biotope classification criteria. This study suggests that the biotope classification system is consisted of four steps system: large(biotope class), medium(biotope group), small(biotope type) and detail(sub-biotope type), and the biotope types are classified into 13 types of large step, 45 types of medium step and 127 types of small step. However, this study suggests that the new biotope types on small step or detail step should be continually supplemented with the foundation of classification system proposed in this study because the biotope type classification should consider regional characteristics.

An Application of Remote Sensing Method for Close-to-nature Stream Evaluation : Focusing on Vegetation Index of Multi-Spectral Satellite Image (자연형 하천평가를 위한 원격탐사법 응용 : 다중파장 위성영상의 식생지수 중심)

  • Yoon, Yeong-Bae;Cho, Hong-Je;Kim, Geun-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.462-466
    • /
    • 2006
  • Close-to-nature stream evaluation is one of the processing to make the streams over in order to keep them natural. It is integral to evaluate and make an accurate analysis of them on the purpose of maintaining streams healthy. For many instances, there are, stream organization evaluation for restoration by German government, evaluation for ecosystem protection in natural preserves by New Zealand government, and stream-view evaluation for restoration by Britain government so on. In case of the country there are analysis and evaluation of stream physical organization by Cho, Yong-hyun, Close-to-nature stream evaluation for restoration by Kim, Dong-chan, evaluation of stream properties in korea by Park, Bong-jin. Close-to-nature evaluation by Lim, Chan-uk, that is advanced version of Park, Bong-jin's, shows form of stream including waterway curve, sand bar, diversity of flow, river bed material, diversity of minor bed, minor bed bank protection works, bank protection material. It also does environment of stream including side of minor bed vegetation, width of surface of the water/width of the river etc.. By the way, this evaluation does not have free access to apply those details above in the field, it often happens that you get various outcome from the one spot. so you must need more realistic testing method to obtain more accurate data. Remote sensing method is highly recommended because this is very useful for collecting realistic data of vegetation index. what is more, it can not only scan even the minimum area within its resolving power but also do obtain data anytime. Vegetation index indicates Ratio vegetation index, Normalized difference vegetation index, Soil adjusted vegetation index, Atmospherically resistant vegetation index etc.. The research is focusing on Cheokgwa stream which is the branch of Taehwa river and shows 19 sectioned Close-to-nature stream performed according to the method by Lim, chan-uk. Besides let you know vegetation index came from image data of satellite landsat 7 with the variation of buffering area, of the day 9. may. 2003. Of all, the outcome 0.758 at 200m buffer-zone of NDVI was the best we have got so far.

  • PDF

Geographical Shift of Quality Soybean Production Area in Northern Gyeonggi Province by Year 2100 (경기북부지역 콩 생산에 미치는 지구온난화의 영향)

  • Seo, Hee-Cheol;Kim, Seong-Ki;Lee, Young-Soo;Cho, Young-Cheol
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.4
    • /
    • pp.242-249
    • /
    • 2006
  • Potential impacts of the future climate change on crop production can be inferred by crop simulations at a landscape scale, if the climate data may be provided at appropriate spatial scales. Northern Gyunggi Province is one of the few prospective regions in South Korea for growing quality soybeans. Any geographical shift of production areas under the changing climate may influence the current land planning policy in this region. A soybean growth simulation was performed at 342 land units in northern Gyunggi province to test the potential geographical shift of the current production areas for quality soybeans in the near future (form 2011 to 2100). The land units for soybean cultivation were selected by the land use, the soil characteristics, and the minimum arable land area. Daily maximum and minimum temperature, precipitation, the number of rain days and solar radiation were extracted for each land unit from the future digital climate models (DCM, 2011-2040, 2041-2070, 2071-2100). Daily weather data for 30 years were randomly generated for each land unit for each normal year by using a well-known statistical method. They were used to run CROPGRO-Soybean model to simulate the growth, phonology, and yields of 3 cultivars representing different maturity groups grown at 342 land units. According to the model calculations, the warming trend in this region will accelerate the flowering and physiological maturity of all cultivars, resulting in a 7 to 9 days reduction in overall growing season and a 1 to 15% reduction in grain yield of early to medium maturity cultivars. There was a slight increase in grain yield of the late maturing cultivar under the projected climate by 2070, but a decreasing tend was dominant by the year 2100.