• Title/Summary/Keyword: soil ecosystem

Search Result 573, Processing Time 0.025 seconds

The Comparative Studies on the Urban and Rural Landscape for the Plant Diversity Improvement in Pond Wetland (농촌과 도시지역 비교를 통한 연못형습지의 식생다양성 증진방안 연구)

  • Son, Jin-Kwan;Kong, Min-Jae;Kang, Dong-Hyeon;Nam, Hong-Shik;Kim, Nam-Choon
    • Journal of Wetlands Research
    • /
    • v.17 no.1
    • /
    • pp.62-74
    • /
    • 2015
  • Urban areas are variously under threat including deterioration of ecological functions. Many pond wetland types have been created as part of an effort to improve and restore this urban environment. This study was arranged to examine improvement plans of wetlands in urban areas by analyzing semi-natural wetlands in farm areas. As for environment for water quality, it suggested the inflow of natural water neighboring rivers or the direct inflow of rain as the improvement plans. The result which analyzed soil pH, OM, and T-N content of the soil environment mentioned that urban areas supplied artificial sluices, removed apoptotic bodies, and used artificial soil and waterproofing materials and use of natural materials in design and construction, the sluice state of the natural form, and negligence of autumn plants were suggested as the improvement plans. Florae appeared in the subject sites of the study have found that there are 35 families 69 species in urban areas and 53 families 142 species in rural areas. As the average has found that there are 18.5 families 29.3 species in 4 urban areas and 26.3 families 53.5 species in 4 rural areas, the big difference between them was analyzed. As the cause has found that there are differences in yearly plants in farming areas when compared to urban areas, creation of various basic environments including soil and water quality was suggested to make yearly plants settle down widely. Naturalized plants have found that there are no big differences between urban areas and rural areas. However, the average of the naturalized ratio in urban areas is 17.4% as the naturalized plants are about 1/4 of the appeared plants. As it was analyzed to be higher than 7.7%, the average of the naturalized ratio in farming areas as the big difference, creation of various inhabiting environments was suggested to make more yearly plants appear like the analyzed result of the life type. Consideration of placement, materials, and inhabiting environments was suggested to make creation of wetlands well appreciated to improve functions of wetlands in urban areas. It is expected that the above results of the study will be utilized in creation and improvement of the pond wetlands which can play a huge role in increase and improvement of biological diversity in urban areas.

Distribution and absorption of Organic Carbon in Quercus mongolica and Pinus densiflora Forest at Mt. Gumgang in Seosan (서산지역 금강산 신갈나무림과 소나무림의 유기탄소 분포 및 흡수량)

  • Won, Ho-Yeon;Kim, Deok-Ki;Han, Areum;Lee, Young-Sang;Mun, Hyeong-Tae
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.2
    • /
    • pp.243-252
    • /
    • 2016
  • Comparison of Organic carbon in the Quercus mongolica and Pinus densiflora forest at Mt. Gumgang were investigated. Carbon in above and below ground standing biomass, litter layer, and soil organic carbon were measured from September 2013 through August 2014. For the estimation of carbon cycling, soil respiration was measured. The amount of carbon allocated to above and below ground biomass in Q. mongolica and P. densiflora forest was 115.07/34.36, $28.77/8.59ton\;C\;ha^{-1}$, respectively. Amount of organic carbon in annual litterfall in Q. mongolica and P. densiflora forest was 4.89, $6.02ton\;C\;ha^{-1}$, respectively. Amount of organic carbon within 50cm soil depth was 132.78, $59.72ton\;C\;ha^{-1}$ $50cm-depth^{-1}$, respectively. Total amount of organic carbon in Q. mongolica and P. densiflora forest estimated to 281.52, $108.69ton\;C\;ha^{-1}$, respectively. Amount of organic carbon returned to the forest via litterfall in Q. mongolica and P. densiflora forest was 2.83, $2.20ton\;C\;ha^{-1}$, respectively. The amount of organic carbon absorbed from the atmosphere of this Q. mongolica and P. densiflora forest was 3.90, $0.81ton\;C\;ha^{-1}yr^{-1}$ respectively. Absorption of organic carbon in Q. mongolica forest was remarkably higher than P. densiflora forest.

Characteristics of Herbaceous Vegetation Structure of Barren Land of Southern Limit Line in DeMilitarized Zone (비무장지대 남방한계선 불모지 초본식생구조 특성)

  • Yu, Seung-Bong;Kim, Sang-Jun;Kim, Dong-Hak;Shin, Hyun-Tak;Bak, Gippeum
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.2
    • /
    • pp.135-153
    • /
    • 2021
  • The demilitarized zone (DMZ) is a border barrier with 248 kilometers in length and about 4 kilometers in width crossing east to west to divide the Korean Peninsula about in half. The boundary at 2 kilometers to the south is called the southern limit line. The DMZ has formed a unique ecosystem through a natural ecological succession after the Armistice Agreement and has high conservation value. However, the use of facilities for the military operation and the unchecked weeding often damage the areas in the vicinities of the southern limit line's iron-railing. This study aimed to prepare basic data for the restoration of damaged barren vegetation. As a result of classifying vegetation communities based on indicator species, 10 communities were identified as follows: Duchesnea indica Community, Hosta longipes Community, Sedum kamtschaticum-Sedum sarmentosum Community, Potentilla anemonefolia Community, Potentilla fragarioides var. major Community, Prunella vulgaris var. lilacina Community, Dendranthema zawadskii var. latilobum-Carex lanceolata Community, Dendranthema zawadskii Community, Plantago asiatica-Trifolium repens Community, and Ixeris stolonifera-Kummerowia striata Community. Highly adaptable species can characterize vegetation in barren areas to environment disturbances because artificial disturbances such as soil erosion, soil compaction, topography change, and forest fires caused by military activities frequently occur in the barren areas within the southern limit line. Most of the dominant species in the communities are composed of plants that are commonly found in the roads, roadsides, bare soil, damaged areas, and grasslands throughout South Korea. Currently, the vegetation in barren areas in the vicinities of the DMZ is in the early ecological succession form that develops from bare soil to herbaceous vegetation. Since dominant species distributed in barren land can grow naturally without special maintenance and management, the data can be useful for future restoration material development or species selection.

A History of Termite Control and Improvements to Prevent Termites in Wooden Architectural Heritage (국내외 흰개미 방제 기술의 발달 과정과 목조건축문화재의 흰개미 피해 저감을 위한 방안)

  • LEE, Sangbin;IM, Ikgyun;KIM, Sihyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.2
    • /
    • pp.194-215
    • /
    • 2021
  • Termites are important decomposers in the ecosystem. They are also economically significant structural pests. In this study, we reviewed the developments of termite control and recent research on termite management to provide information on the prevention and control of termites. In Korea, most of the damage to wooden historical buildings is caused by subterranean termites. Reticulitermes speratus kyushuensis is the main species, which is widely found throughout the country. In the early 1900s, inorganic insecticides, such as arsenic dust, were used for termite control. After the synthesis of chlorinated hydrocarbon pesticide in the 1940s, it was widely utilized and demonstrated high termite control efficacy. However, chlorinated hydrocarbon insecticides were later banned, disappearing from markets after reports emerged concerning environmental contamination and toxicity to humans. Therefore, the termite control industry sought a new termiticide; hence many pesticides were utilized for termite control. Organophosphate (1960s), carbamate (1970s), pyrethroid, and insect growth inhibitor (1980s) were newly synthesized and adopted. In the 1990s, the first commercial baits using chitin synthesis inhibitors (CSI) were developed, providing a means to eliminate an entire colony of subterranean termites around a structure. Many studies have been carried out on soil termiticides (liquid termiticides) and CSI baits to increase their efficacy, and different baits such as aboveground bait stations, fluid bait, and high-durability bait were also developed in the 2000s. In addition, the paradigm of termite control has shifted from localized treatments using soil termiticides to area-wide pest management using CSI baits to create termite-free zones and protect buildings over time. Termite infestations in wooden historical buildings in Korea have been reported since 1980, and considerable attention was drawn in the 1990s when several UNESCO world heritages such as the Jongmyo Shrine and the Janggyeong Panjeon Depositories of Haeinsa Temple were infested by subterranean termites. Since then, a survey of termite infestation in wooden architectural heritage has been conducted, and the National Research Institute of Cultural Heritage and Heritage Care Program regularly monitors those properties. Finally, we suggest termite management using primarily CSI baits, selective application of various soil treatments applied to the object, foundation soil treatment, research and development of durable termite baits, application of area-wide programs for wooden-building complexes, application of integrated termite management (ITM), and regular education for owners and managers to prevent and reduce termite damage.

The Characteristics of Soil Oribatid Mite(Acari: Oribatida) Communities as to Differences of Habitat Environment in Mt. Jumbong, Nature Reserve Area in Korea (점봉산 천연보호림에서 서식환경 차이에 따른 토양날개응애 군집특성)

  • Kang, Bang-Hun;Lee, Joon-Ho;Choi, Seong-Sik
    • Korean Journal of Environment and Ecology
    • /
    • v.21 no.6
    • /
    • pp.536-543
    • /
    • 2007
  • This research was conducted every month from June 1994 until August 1996 with the aim to understand the ecosystem structure through the analysis of oribatid mite community structure in soil subsequent to environmental difference of its habitats located at northward & southward slopes adjacent to each other at an altitude of 1,000 meters of Mt.Jumbong, which is a natural reserved forest, remaining intact. There appeared a significant difference [t-test, p<0.06] in comparison of the number of the species and individuals of Oribatid mite species which were collected and identified at two survey areas. The mean density and the number of the species collected and identified at the northward slopes, and southward slopes were $99.2{\pm}17.6,\;234.2{\pm}62.6$ and $24.7{\pm}3.0,\;40.8{\pm}5.8$, respectively. Species diversity index(H') was higher at the southward slopes($3.09{\pm}0.11$) than at the northward slopes($2.71{\pm}0.13$). The population size of Oribatid mite species was found by the percentage of each species density as against the whole density and classified into dominant species, influent species, and recessive species according to the percentage; as a result, O. nova and Suctobelbella naginata was found to be a dominant species at both survey slopes while Trichogalumna nipponica was found to be a dominant species, at southward but it wasn't collected at the northward slopes at all. The feeding habit of the dominant species at two survey slopes was found to be microphytophagous- eating soil microbe. There appeared a conspicuous difference in compositions of the number of the species, individuals and dominant species at the southward/northward slopes adjoining each other at an attitude of 1,000 meters and less similarity between the two survey slopes. Conclusively, It was found that the heterogeneity of microhabitat has a great effect on Oribatid mite's community characteristics.

Floristic Diversity of Serpentine Area in Andong, Korea (안동 사문암지대의 식물다양성)

  • Kim, Jung-Hyun;Kim, Sun-Yu;Jung, Eun-Hee;Kim, Jin-Seok;Noh, Tae-Kwon;Bae, Ho-Myung;Nam, Chun-Hee;Lee, Byoung Yoon
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.1
    • /
    • pp.19-38
    • /
    • 2016
  • This study was carried out to investigate the flora, vegetation and soil properties of serpentine area in Andong, Korea. The vascular plants identified during the seven-round field surveys were a total of 359 taxa: 88 families, 239 genera, 311 species, 6 subspecies, 33 varieties, 6 forms and 3 hybrids. 249 taxa were newly discovered in this region. The plant composition of serpentine area is the deciduous broad-leaved and conifer-mixed forest which is the common one in the middle part of the Korean peninsula. Four taxa of Korean endemic plants such as Clematis brachyura, Populus ${\times}$ tomentiglandulosa, Paulownia coreana and Aster koraiensis were collected. The vascular plants on the red list according to IUCN evaluation basis were found to be seven taxa: Near Threatened (NT) species of Hypericum attenuatum, Polygala tenuifolia and Senecio argunensis, Least Concern (LC) species of Penthorum chinense, Potentilla discolor and Acorus calamus, and Not Evaluate (NE) species of Scorzonera austriaca ssp. glabra. The floristic regional indicator plants found in this area were 19 taxa comprising two taxa of grade IV, five taxa of grade III, four taxa of grade II, and nine taxa of grade I. The naturalized plants were identified as 34 taxa and the percentage of naturalized index (NI) was 9.5 %, and urbanization index (UI) was 10.6 %. Forest soils contained high content of nickel and cadmium. The soil layer consists of loam and silt loam from the surface to a depth of 20 cm and loam and silt clay from a depth of 20 cm to 40 cm.

Design Strategies for Ecological Restoration Using System Dynamics - Focused on 2015 Miryang-si Jayeon Madang Development Project - (시스템 다이내믹스를 활용한 생태복원 설계 전략 - 2015 밀양시 자연마당 조성사업을 사례로 -)

  • Ham, Eun-Kyung;Song, Ki-Hwan;Chon, Jinhyung;Cho, Dong-Gil
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.6
    • /
    • pp.86-97
    • /
    • 2015
  • "The Jayeon Madang Development Project("JMDP")" is a project being promoted by the Ministry of Environment to create a cultural space and a natural rest area within the city. Abuksan, located at Abuksan in Gyeongsangnam-do Miryang-si Naeil-dong, has suffered a substantial amount of environmental degradation over time, so the need for ecological restoration made it a natural choice for the location of the JMDP's site. The purpose of this study is to examine ecological restoration design strategies used in Abuksan as part of the JMDP using system dynamics. The national archery center, hole, and arable land sites are key restoration areas in Abuksan that have faced with ecological problems. In this study, we identified the status of each site, determined key strategies being implemented, and designed based on the strategies implemented up to this point for solving problems associated with each sites through the use of causal loop diagrams. The results of the causal loop diagram analysis are as follows. The national archery center site was designed around strategies including planting green manure crops and introducing hugelkultur to reduce soil acidification and green network degradation. The hole site was designed as a constructed wetland based on the emergence of hygropreference vegetation, hydrated by rainwater collected at the bottom of hole, ecological and cultural benefits of such an environment. The arable land site restoration design was built around planting native vegetation on one part of the arable land site after soil quality improved and around restoration of grassland and a dry wetland on the other part of the site to reduce soil acidification, erosion, and green network degradation. This study is a significant attempt to apply principles of system dynamics to ecological restoration by providing the design strategies using comprehension of some problems in the ecosystem feedback loops, which has not been used before in general design processes for ecological restoration.

Evaluation of Carbon Sequestration Capacity of a 57-year-old Korean Pine Plantation in Mt. Taeh wa based on Carbon Flux Measurement Using Eddy-covariance and Automated Soil Chamber System (에디 공분산 및 자동화 토양챔버 시스템을 이용한 탄소 플럭스 관측 기반 태화산 57년생 잣나무조림지의 탄소흡수능력 평가)

  • Lee, Hojin;Ju, Hyungjun;Jeon, Jihyeon;Lee, Minsu;Suh, Sang-Uk;Kim, Hyun Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.554-568
    • /
    • 2021
  • Forests are the largest carbon (C) sinks in terrestrial ecosystems. Recently, as enhancing forest C sequestration capacity has been proposed as a basic direction of the Republic of Korea's "2050 Carbon Neutral Strategy," accurate estimation of forest C sequestration has been emphasized. According to the Intergovernmental Panel on Climate Change guidelines, sequestration quantity is calculated from changes in C stocks in forest C pools, such as biomass, deadwood, litter and soil layer, and harvested wood products. However, in Korea, only the overstory biomass increase is now considered the amount of sequestration quantity, so there can be a significant difference from the actual forest C sequestration. In this study, we quantified forest C exchange through C flux measurement using an eddy covariance system and an automated soil chamber system in a 57-year-old Korean pine plantation located in Mt. Taehwa, Gwangju-si, Gyeonggi-do. Then, the net amount of C sequestration was compared with the amount of the overstory biomass increase. We estimated the annual C stock change in the remaining C pools by comparing the net sequestration amount from the C flux measurement with the overstory biomass increase and C stock change in the litter layer. Therefore, the net C sequestration of the Korean pine plantation estimated from the flux measurement was 5.96 MgC ha-1, which was about 2.2 times greater than 2.77 MgC ha-1 of the overstory biomass increase. The annual C stock increase in the litter layer was estimated to be 0.75 MgC ha-1, resulting in a total annual C stock increase of 2.45 MgC ha-1 in the remaining C pools. Our results indicate that the domestic forest is a larger C sink than the current methods, implying that more accurate calculations of the C sequestration capacity are necessary to quantify C stock changes in C pools along with the C flux measurement.

A Study on the Conditions of Natural Damage of Undesignated Cultural Heritages and the Plans to Reduce Damage through Vegetation Management - With Emphasis on Samcheonsaji Temple Site on Mt. Bukhansan - (비지정 문화유적의 훼손현황과 식생관리를 통한 저감방안 연구 -북한산 삼천사지를 사례로-)

  • Hong, Hee-taek;Kim, Hyeon-beom;Lee, Mun-haeng
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.3
    • /
    • pp.114-133
    • /
    • 2013
  • This study aims to identify the natural damage of the Samcheonsaji Temple Site in Bukhansan National Park and to suggest the plans to minimize damage for the remains. The types of natural damage are classified into direct vegetation damage, indirect topographical damage, and artificial damage. The most popular causes of damage to temple sites include the roots of trees as direct vegetation damage and the soil erosion by rain or stream as topographical damage. Direct vegetation damage includes burial remains damaged by the root of trees and vines, but it is often observed that some trees have contributed to protection against collapse. Indirect topographical changes have damaged the ruins by soil erosion caused by floods or typhoons. Vegetation changes due to topographical reasons have also caused damage. Artificial reasons of damage include forestry operations and compaction by hikers. Based on the analysis of the findings, the following could be suggested as plans to resolve these problems: 1. Natural damage occurs slowly due to negligence. Therefore, it could be reduced by forestry improvement, including forest density control through thinning, planting to prevent landslides, maintaining grasslands nearby. 2. Deciduous broadleaf trees can be planted to reduce soil erosion by rainfall. It is necessary to maintain the density of forests at around $0.02{\sim}0.18trees/m^2$. 3. It would be good to grow Quercus spp and Carpinus spp or weaken the community of Robinia pseudoacacia and Pueraria lobata which disturb the ecosystem. Samcheonsaji Temple Site is located in Mt. Bukhan National Park that is a publicly owned property. Therefore, it is constantly maintained for natural preservation and vegetation management could be considered for the preservation of historical remains.

A Study on the Characteristics of Paridae Nesting Material by Urban Green Area Type (도시녹지 유형별 박새과 둥지 재료 특성 연구)

  • Kim, Kyeong-Tae;Lee, Hyun-Jung;Kim, Whee-Moon;Kim, Seoung-Yeal;Song, Wonkyong
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.3
    • /
    • pp.256-264
    • /
    • 2021
  • Rapid urbanization around the world has negatively affected wildlife habitats, including birds. Wild birds settled in the city are adapting to the changed surroundings, and are typically known to make nests using materials that are easy to find around the city. This study was conducted for the purpose of analyzing the nesting materials on the Paridae using artificial bird nests installed in cities. In this study, the researchers established a total of 33 artificial bird nests in urban parks (22) and forests (11) in Cheonan-si, Chungcheongnam-do. Then we collected 4 artificial bird nests in urban parks (18.19%) and 5 in urban forests (45.46%) to compare the characteristics of bird nest materials by the nest, species, and urban green area types. Eight nests, excluding a nest abandoned by a pair of Paridae, were used for the material analysis. The collected nests were dried, and classified into natural materials (vegetable materials, animal materials, moss, and soil) and artificial materials (cotton, paper pieces, plastics, vinyl, and synthetic fibers), and then each nest was weighed. The classification result shows that the portion of moss (50.65%) was the highest in all nests, followed by soil (21.43%), artificial material (13.95%), vegetable material (5.78%), animal material (4.57%), and others (3.59%) in that order. Artificial materials were used in all nests in urban green areas. Moreover, although the Paridae used about 5.16% more vegetable material than the Parus varius, it was not significant (t=2.17, p=0.07). Plant materials and soil were most preferred in urban forests, and moss, animal, and artificial materials were widely used in that order in urban parks. There was a significant difference in the use of vegetable materials between urban parks and urban forests (t=3.07, p<0.05*). In the habitats like urbanized and dry areas, where artificial materials are highly accessible, artificial materials replaced some roles of natural materials. This study is a basic study for the analysis of the types of materials used in artificial bird nests to understand the habitat system of urban ecosystems. It can be used as the basic data for ecological studies and conservation of the Paridae species.