• Title/Summary/Keyword: soil depth(0-3,3-6 cm)

Search Result 314, Processing Time 0.028 seconds

Monitoring soil respiration using an automatic operating chamber in a Gwangneung temperate deciduous forest

  • Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.34 no.4
    • /
    • pp.411-423
    • /
    • 2011
  • This study was conducted to quantify soil $CO_2$ efflux using the continuous measurement method and to examine the applicability of an automatic continuous measurement system in a Korean deciduous broad-leaved forest. Soil respiration rate (Rs) was assessed through continuous measurements during the 2004-2005 full growing seasons using an automatic opening/closing chamber system in sections of a Gwangneung temperate deciduous forest, Korea. The study site was an old-growth natural mixed deciduous forest approximately 80 years old. For each full growth season, the annual Rs, which had a gap that was filled with data using an exponential function derived from soil temperature (Ts) at 5-cm depth, and Rs values collected in each season were 2,738.1 g $CO_2$ $m^{-2}y^{-1}$ in 2004 and 3,355.1 g $CO_2$ $m^{-2}y^{-1}$ in 2005. However, the diurnal variation in Rs showed stronger correlations with Ts (r = 0.91, P < 0.001 in 2004, r = 0.87, P < 0.001 in 2005) and air temperature (Ta) (r = 0.84, P < 0.001 in 2004, r = 0.79, P < 0.001 in 2005) than with deep Ts during the spring season. However, the temperature functions derived from the Ts at various depths of 0, -2, -5, -10, and -20 cm revealed that the correlation coefficient decreased with increasing soil depth in the spring season, whereas it increased in the summer. Rs showed a weak correlation with precipitation (r = 0.25, P < 0.01) and soil water content (r = 0.28, P < 0.05). Additionally, the diurnal change in Rs revealed a higher correlation with Ta than that of Ts. The $Q_{10}$ values from spring to winter were calculated from each season's dataset and were 3.2, 1.5, 7.4, and 2.7 in 2004 and 6.0, 3.1, 3.0, and 2.6 in 2005; thus, showing high fluctuation within each season. The applicability of an automatic continuous system was demonstrated for collecting a high resolution soil $CO_2$ efflux dataset under various environmental conditions.

Draft Characteristics of Korea Paddy Field by Computer Simulation (시뮬레이션에 의한 한국 논 토양의 경운저항 특성)

  • 이규승;박원엽;우상하
    • Journal of Biosystems Engineering
    • /
    • v.24 no.3
    • /
    • pp.195-208
    • /
    • 1999
  • A computer simulation was carried out to investigate draft characteristics of Korean paddy field for obtaining the basic reference to the selection of optimum moldboard type suitable for Korean paddy field conditions. Cylindrical, cylindroidal, semihelical moldboard plows, and one type of oriental Janggi were used for simulation. A series of soil bin experiments was conducted to compare the experimental results with the predicted drafts from computer simulation using the cylindroidal moldboard plow. The computer model predicted draft force with 1~12% error at 12~16cm plowing depth which is the most conventional plowing depth in the rural area in Korea. Thus, the computer model was considered to be good enough for simulation. Due to the different plowing width of experimental plows, specific draft was selected for comparison by computer simulations. Specific draft of cylindrical moldboard plow was ranged from 3 to 6 N/$\textrm{cm}^2$ according to the soil conditions, plowing speed and plowing depth, 2.5~3.0 N/$\textrm{cm}^2$ for semihelical moldboard plow.

  • PDF

Calculation of Soil Moisture Control Section to determine Soil Moisture Regime of Medium Textured Soil Catena in Hilly Area (경사지(傾斜地) 중립질토양연접군(中粒質土壤連接群)에 대한 토양수분상(土壤水分相) 결정(決定)을 위한 부위(部位) 선정(選定))

  • Jung, Yeun-Tae;Kim, Jung-Kon;Son, Il-Soo;Yoon, El-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.1
    • /
    • pp.1-5
    • /
    • 1989
  • This study was carried out by using laboratory data to calculate Soil Moisture Control Section (SMCS) for medium textured topo-sequential soils derived from porphyry in Milyang area. The soils studied were characterized by loam to silty clay loam, and the moisture content at -1/3 bar in the solum ranged around 21.06% to 32.42%. The moisture contents per centimeter of soil layer within a solum calculated at field capacity (FC) ranged from 0.11cm to 0.19cm. The upper boundaries of SMCS of the soils calculated on the basis of FC as the water content at -1/3 bar, ranged from 16.2cm to 21.2cm and the lower boundaries from 44.4cm to 63.8cm, and the depth of SMCS were from 27.7cm to 42.6cm in the soil profiles. The Bongsan soil on the summit had shallower in the boundaries and narrower in the depth of SMCS than the soils on side-slopes or on valley.

  • PDF

Effects of Mulching Practices on Soil Temperature and Soil Physical Properties (Mulching방법별(方法別) 토양온도(土壤溫度)와 토양물리성(土壤物理性) 변화(變化))

  • Jung, Pil-Kyun;Lee, Kwang-Seek;Ko, Mun-Hwan;Um, Ki-Tae;Ha, Ho-Seong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.4
    • /
    • pp.366-372
    • /
    • 1985
  • Soil temperatures and soil physical properties were investigated in order to better understand the effects of mulchings in the red pepper field. The red pepper was planted in the lysimeter installed at the Yesan sandy loam with 20% slope and 10cm slope length. The results were summarized as follows: 1. Average soil temperatures at 10cm and 20cm depth in vinyl mulching plots were $1.6^{\circ}C$ and $1.1^{\circ}C$ higher than those of control, respectively. However, the average soil temperatures in rice straw mulching plots were relatively lower than those of control during the growing season. 2. The greatest diurnal fluctuation of soil temperature was found at the vinyl mulching plots and it was decreased with increasing soil depth. 3. The calculated thermal diffusivities were 0.011, 0.009 and $0.007cm^2/sec$ for the vinyl mulching, control and straw mulching, respectively. 4. Soil losses were 103kg/10a for the vinyl mulching and 36kg/10a for the straw mulching which were nearly negligible as compared to the control. 5. Soil physical properties such as bulk density, hardness and water content were significantly improved by the vinyl and straw mulchings.

  • PDF

Adsorption and Movement of Fenoxaprop-P-ethyl in Soils (토양중 fenoxaprop-P-ethyl의 흡착성 및 이동성)

  • Han, Soo-Gon;Ahn, Byung-Koo;Moon, Young-Hee
    • Korean Journal of Weed Science
    • /
    • v.18 no.4
    • /
    • pp.325-332
    • /
    • 1998
  • This study was carried out to investigate the adsorption and the movement of herbicide fenoxaprop-P-ethyl in the silty clay soil(SiC) and the sandy loam soil(SL). Fifteen percent of the added herbicide was adsorbed within 30 min after shaking, and a quasi-equilibrium was reached after 8 to 14 h. The time required for 50% adsorption was 15.8 h in the SiC and 19.3 h in the SL. The equilibrium adsorption isotherm was followed by the Freundlich equation and the Kd was 3.86 in the SiC and 2.32 in the SL. The herbicide in the soil columns flooded with 3 cm water depth and eluted at 0.8 cm/day was leached to 6 cm and 8 cm depth at 7 and 21 days after the treatment, respectively. However, the movement was widened with increased amount of leaching water. The herbicide in the field soils was moved up to 6 cm and 8 cm depth at 14 and 56 days after the treatment, respectively. However, the large amount of the applied herbicide was distributed in 0~2 cm profile in all of the soils examined. Half-life of the chemical in soils was shorter than 7 days and the time to 90% degradation was about 4 weeks. The results indicate that the herbicide has relatively small mobility and short persistence.

  • PDF

Changes of Soil Salinity due to Flooding in Newly Reclaimed Saline Soil (신간척지 토양에서 담수에 의한 토양염도 변화에 대한 개관)

  • Ryu, J.H.;Yang, C.H.;Kim, T.K.;Lee, S.B.;Kim, S.;Baek, N.H.;Choi, W.Y.;Kim, S.J.;Chung, D.Y.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.spc
    • /
    • pp.45-46
    • /
    • 2009
  • This study was carried out to identify the changes of EC during desalinization due to flooding in newly reclaimed saline soil. To do this, experimental plots were made of rotary tillage+water exchanging plot, flooding plot and rainfall flooding plot. In rotary tillage+water exchanging plot, drainage, rotary tillage and flooding were conducted at the interval of 7 days. In rotary tillage+water exchanging plot and flooding plot, plots were irrigated at the height of 10 cm. After 38 days desalinization, changes of EC values at top soil (0~20 cm) were as follows. In rotary tillage+water exchanging plot, EC decreased from $21.38dS\;m^{-1}$ to $2.16dS\;m^{-1}$ and in flooding plot, EC decreased from $13.97dS\;m^{-1}$ to $2.22dS\;m^{-1}$. In rotary tillage+water exchanging plot and flooding plot, EC values decreased below the EC criterion ($4.0dS\;m^{-1}$) of saline soil. In rainfall flooding plot, EC values decreased or increased according to amounts of rainfall and rainfall time. After 38 days, EC decreased from $16.7dS\;m^{-1}$ to $12.35dS\;m^{-1}$. In flooding plot, changes of EC due to soil depth were investigated. After 38 days desalinization, changes of EC due to soil depth were as follows. At 0~10 cm depth, EC value decreased from $13.08dS\;m^{-1}$ to $0.74dS\;m^{-1}$ (94.3% of salt was desalinized). At 10~20 cm depth, EC value decreased from $14.80dS\;m^{-1}$ to $3.69dS\;m^{-1}$ (75.2% of salt was desalinized). At 20~30 cm depth, soil was desalinized slowly compared with upper soil, EC value decreased from $13.57dS\;m^{-1}$ to $6.93dS\;m^{-1}$ (48.9% of salt was desalinized).

Effects of Sprout Length, $Ca0_2$ Coating and Seeding Depth on Seedling Stand and Early Growth in Puddled-soil Drill Seeding of Rice (벼 무논골뿌림재배시 최아장, 과산화석회 처리 및 파종심도가 입모수와 초기생육에 미치는 영향)

  • Kim, Sang-Su;Park, Hong-Gue;Choi, Weon-Young;Lee, Seon-Yong;Cho, Soo-Yeon;Cho, Dong-Sam
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.3
    • /
    • pp.295-301
    • /
    • 1996
  • This study was carried out to clarify the effect of sprout length, burried depth of seed and CaO$_2$ seed coating on emergence, seedling stand and early growth of rice in puddled-soil drill seeding at Junbuk in 1995. The cultivar tested was Dongjinbyeo(Japonica type). Although the longer sprouted seeds were caused the better seedling stand, 4mm sprout length of seeds appeared to be appropriate for good seedling stand and seeding uniformity, while 6mm sprouted seed resulted in ununiform seedling establishment. Rapid emergence and increased seedling stand were obtained by CaO$_2$ seed coating, which had effect more on soaked seed than on sprouted seed, but the seedling stand of sprouted seeds significantly reduced at deeper than 1cm seeding depth and also emergence rate of sprouted seeds significantly reduced at deeper than 2cm seeding depth.

  • PDF

No-tillage Agriculture of Korean-Type on Recycled Ridge I. Changes in Physical Properties : Soil Crack, Penetration Resistance, Drainage, and Capacity to Retain Water at Plastic Film Greenhouse Soil by Different Tillage System (두둑을 재활용한 한국형 무경운 농업 I. 경운방법에 따른 시설재배 토양의 물리적 특성: 균열, 관입저항, 배수, 보수력 변화)

  • Yang, Seung-Koo;Jung, Woo-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.4
    • /
    • pp.699-717
    • /
    • 2016
  • This study was carried out to investigate the effect of no-tillage on sequential cropping supported from recycling of first crop ridge on the growth of pepper plant and physical properties of soil under green house condition. 1. Degree of crack on soil by tillage and no-tillage Soil cracks found in ridge and not found in row. At five months of tillage, crack number and crack length in length ridge were 3 and 37~51 cm in tillage. Maximum width and maximum depth in length ridge were 30 mm and 15.3cm in tillage. Crack number and crack length in width ridge were 7.5 and 7~28 cm in tillage. Maximum width and maximum depth in width ridge were 29 mm and 15.3 cm in tillage. At a year of no-tillage, crack number and crack length in length ridge were 1.0 and 140~200 cm in tillage. Maximum width and maximum depth in length ridge were 18 mm and 30 cm in a year of no-tillage. Crack number and crack length in width ridge were 11 and 6~22 cm in a year of no-tillage. Maximum width and maximum depth in width ridge were 22 mm and 18.5 cm in a year of no-tillage. Soil crack was not found at 2 years of no-tillage in sandy Jungdong series (jd) soil. Soil crack was found at 7 years of no-tillage in clayish Jisan series (ji) soil. 2. Penetration resistance on soil Penetration resistance was increased significantly at no-tillage in Jungdong series (jd). Depth of cultivation layer was extended at no-tillage soil compared with tillage soil. Penetration resistance of plow pan was decreased at 1 year of no-tillage compared with than tillage soil. Penetration resistance was linearly increased with increasing soil depth at tillage in Jisan series (ji). Penetration resistance on top soil was remarkably increased and then maintained continuously at no-tillage soil. 3. Drainage and moisture content of soil Moisture content of ridge in top soil was not significant difference at both tillage and no-tillage. Moisture content of ridge in 20 cm soil was 14% at no-tillage soil and 25% at tillage soil. 4. Change of capacity to retain water in soil Capacity to retain water in top soil was not significant difference at 1 bar both tillage and no-tillage. Capacity to retain water in soil was slightly higher tendency in 1 year and 2 years of no-tillage soil than tillage soil. Capacity to retain water in soil was increased at 15 bar both tillage and no-tillage. Capacity to retain water in subsoil was slightly higher tendency at 1 bar and 3 bar in 2 years of no-tillage than tillage soil and a year of no-tillage soil.

Physicochemical Properties of Soils as Affected by Minimum Tillage and Direct Seeding Cultivation on Dry Rice Paddy

  • Seo, Myung-Chul;Seong, Ki-Yeong;Cho, Hyeon-Suk;Kim, Min-Tae;Park, Tae-Seon;Kang, Hang-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.1
    • /
    • pp.8-15
    • /
    • 2014
  • In order to evaluating physiochemical properties of soil under minimum tillage and direct seeding cultivation on dry rice paddy, we conducted to analyze the soil physiochemical characteristics in treatment with 2-year minimum tillage and dry direct seeding (2MT), 3-year minimum tillage and dry direct seeding (3MT), and tillage transplanting cultivation (TT). As results of analyzing soil organic matter (OM) contents with 2 cm soil depth of interval from surface to 30 cm, OM contents with surface soil from 0 to 2MT and 3MT were higher than TT, recorded 34.6, 28.1 and $19.8gkg^{-1}$, respectively. But until 20cm in soil depth, it was not so large on the deviation of OM contents among the 3 treatments comparing with 2cm surface. Beneath 20 cm in soil depths, 2- and 3-year, OM contents in TT were distributed to be lower than 2MT and 3MT. The contents of total nitrogen in 2MT and 3MT were higher than the content in TT across the soil profile. Consequently, though minimum tillage and direct seeding farming is obviously the practice to saving of machinery work and labor, other practices such as continuously input OM should be needed to achieve carbon sequestration goal through minimum tillage and direct seeding on dry paddy.

Prediction of Seedling Emergence and Early Growth of Eleocharis kuroguwai Ohwi under Evaluated Temperature (상승된 온도 조건에서 올방개(Eleocharis kuroguwai)의 출아 및 초기생장 예측)

  • Kim, Jin-Won;Moon, Byeong-Chul;Lim, Soo-Hyun;Chung, Ji-Hoon;Kim, Do-Soon
    • Korean Journal of Weed Science
    • /
    • v.30 no.2
    • /
    • pp.94-102
    • /
    • 2010
  • Field and pot experiments were conducted to investigate seedling emergence and early growth of Eleocharis kuroguwai panted on different dates. Non-linear regression analyses of observed data against effective accumulated temperature (EAT) with the Gompertz model showed that the Gompertz model works well in describing seedling emergence and early growth of E. kuroguwai regardless of planting date and soil burial depth. EATs required for 50% of the maximum seedling emergence of E. kuroguwai planted at 1, 3 and 5 cm soil burial depth in the pot experiment were estimated to be 54.5, 84.0 and $118.0^{\circ}C$, respectively, and $56.7^{\circ}C$ when planted at 1 cm in the field experiment. EATs required for 50% of the maximum leaf number of E. kuroguwai planted at 1, 3 and 5 cm soil burial depth in the pot experiment were estimated to be 213.3, 249.0 and $291.6^{\circ}C$, respectively, and $239.5^{\circ}C$ when planted at 1 cm in the field experiment. Therefore, models developed in this study thus predicted that if rotary tillage with water is made on 27 May under $+2^{\circ}C$ elevated temperature condition, dates for 50% of the maximum seedling emergence, 5 leaf stage and 5 cm plant height of E. kuroguwai buried at 3 cm soil depth were predicted to be 2 June, 10 June and 12 June. These dates are 1 day earlier for the seedling emergence and 3 days earlier for the early growth as compared with current temperature condition, suggesting that earlier application of herbicides is required for effective control of E. kuroguwai.