• Title/Summary/Keyword: soil culture

Search Result 1,537, Processing Time 0.039 seconds

비친수성유기물질(HOC)로 오염된 토양의 정화를 위한 동전기-생물활성화공정의 개발

  • 양지원;김상준;박지연;이유진;기대정
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.326-329
    • /
    • 2003
  • When an electrokinetic process is applied to a HOC-contaminated soil, hybrid types combined with soil flushing, chemical oxidation, and bioremediation are generally used. Especially when the electrokinetic process is combined with bioremediation, the hybrid technology can solve several limits of bioremediation such as low microbial mobility, low soil temperature, and shortage of nutrients in subsurface circumstance. Because microbial surface is charged negatively, the microorganism moves from cathode to anode under electrical field. In this study, mixed culture mainly-consisted by Pseudomonas sp. was applied to remediate pentadecane-contaminated kaolinite with particle size less than 300${\mu}{\textrm}{m}$. This remediation system was named ‘electrokinetic bioaugmentation’ and consisted of model aquifer, electrode reservoirs, bioreactor, power supply, and pump. The mixed culture above 0.5 of optical density in bioreactor was supplied to two reservoirs and penetrated soil when the electric current was applied. To enhance the removal efficiency, the optimal medium composition, electric current, and voltage were investigated.

  • PDF

Construction and Management Directions of Woodland Burial Forest -Case Study of Incheon Family Funeral Services - (수목장림의 조성 및 관리 방안 - 인천가족공원을 대상으로 -)

  • Oh, Choong-Hyeon;Kim, Yong-Hoon;Lee, Sook-Mee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.3
    • /
    • pp.1-12
    • /
    • 2010
  • As social environment of Korea was changing, the cremation is increased instead of traditional funeral culture. Therefore woodland burial appears new funeral culture in Korea. This research had been executed to find out the problem of soil and vegetation environments of woodland burial forest. The case study was worked at woodland burial in Incheon Family funeral services which was national pilot project. The problem of soil and vegetation environments were surveyed in slope, soil compaction, actual vegetation, vegetation communities, structure of forest communities and so on. The results from this study indicate that woodland burial construction didn't consider the damage and management of vegetation environment in Incheon Family funeral Services. Problems for the Law on funeral facilities of Korea is a lack of natural friendly standards for slope, management on structure of forest communities, facilities for users in it. It had steep topography, soil compaction, reduction of species diversity and poor plant growth on woodland burial in Incheon Family funeral Services. Therefore the users of it increase in the future, vegetation environment of woodland burial will be devastated. And so we need to improve standards of woodland burial construction and management to settle down burial culture of woodland burial in Korea.

Effect of Reclaimed Sewage Irrigation on Paddy Rice Culture and Soil Characteristics (오수처리수의 관개가 벼 생육 및 토양 특성에 미치는 효과)

  • 윤춘경
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.3
    • /
    • pp.66-75
    • /
    • 2000
  • Effect of reclaimed sewage on the paddy rice culture was examined by field experiment for two consecutive years. The domestic sewage was treated by the constructed wetland and the effluent of the treatment wetland was used for irrigation water. The reclaimed sewage was diluted before irrigation in the first year and it was used without dilution in the second year experiment. Growth components and yields were compared against the control plot where conventional method was applied. And also soil characteristics of the plots before and after reclaimed sewage irrigation were analyzed Generally addition of the reclaimed sewage irrigation didn't affect paddy rice culture adversely and even enhancement was observed. Fertilization was thought to be important factor for rice culture rather than irrigation water quality. Conventional fertilization and reclaimed sewage irrigation which contained high nutrient concentration resulted in better growth and more yield. Unlike widespread concern lodging did not happen even in the case of irrigation with average 90mg/L of T-N and conventional fertilization. Soil characteristics changed after irrigation and significant EC increasing was observed for the reclaimed sewage irrigation plots. From soil analyses salt accumulation could be a more potential problem than nutrients like nitrogen and phosphorus in the use of reclaimed sewage irrigation. Overall reclaimed sewage irrigation was thought to be one of practical alternatives for the ultimate disposal of sewage in rural area.

  • PDF

Cometabolism of MTBE by pure culture isolated from gasoline contaminated aquifer

  • 장순웅;이시진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.364-367
    • /
    • 2003
  • In this paper, we have examined the MTBE cometabolic degradation by pure culture, which is isolated gasoline contaminated aquifer. Propane was more effectively utilized as a growth substrate to oxidize MTBE. Specific substrate degradation rate was Increased with increasing initial propane amount. Respiking propane was enhanced and continued MTBE degradation and TBA observation was supported MTBE degradation. The mass balance of MTBE and TBA indicated that MTBE was oxidized to TBA as well as further oxidation of TBA.

  • PDF

Investigation of Heavy Metal Contents in Ganoderma lucidum(Fr.) Karst (영지버섯중의 중금속 함량)

  • 하영득;이인선
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.19 no.2
    • /
    • pp.187-193
    • /
    • 1990
  • Ganoderma lucidum has been widely used not only as ingredients in herbal medicine but also in pharmacological soft drinks. The author collected for analysis of content of 8 kinds of heavy metal(Cd, pb, Hg, Cu, Mn, Fe, As) in soil and cluture soil in an around the Taegu area including Sang Ju, Non Gong, Keum Ho, and Weol Bae. THe toxic content in Gaoderma lucidum showed relatively low level as in cadmium lead mercury arsenic : 0.8-0.13ppm 0.17-1.43ppm 0.02-0.32ppm 0.01-0.19ppm respectively : in copper mangenese zinc and iron : 0.93-4.29ppm, 0.37-2.18ppm 1.02-1.65ppm, 4.57-11.04ppm those grown in soil showed higher percentages of content than those grown on logs in lead copper zinc and iron by 43.2% 68.6%, 20.3% and 43.2% respectively. The content of heavy metals in those grown in soil and culture soil tended to be higher in the areas near factories of industrial complexes especially in manganese and iron. The content of heavy metals in soil and culture soil appeared lower than the mean values of Korean Soil. No interrelationship was found in the content of heavy metals between those of Ganoderma lucidum grown on logs and those grown in soil. In case of pot cultivation however the mushroom spawns are grown originally in soil which seems to influence the degree of content of heavy metals of media.

  • PDF

Studies on the Precipitation of Lead Ion and the Inhibition of Plant Growth (연(Pb) 이온의 침전과 식물생장의 억제에 관한 연구)

  • 성민웅
    • Journal of Plant Biology
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 1976
  • This study was carried out to investigate the formation of precipitates between lead ion and the essential anions of plants, the effects of lead concentration on seed germination and plant growth in water and soil culture, and the germinating and growing recovery of inhibited seed germination and plant growth by lead. Four kinds of the seeds (Glycine max M., Triticum vulgare V., Setaria viridis (L) P. De Beauvois, and Digitoria sanguinalis (L) Scopoli var) were germinated and growth in water and soil culture included the different concentrations of lead for five days. The seeds and plants inhibited germination and growth by lead were transferred to lead free Hoagland solution and the growing recovery was observed. The precipitates of lead ion were observed in the solution of both acidity and alkalinity included each anion of $H_2PO_4^-, HPO_4^{2-}, PO_4^{3-}, SO_4^{2-} and MoO_4^{2-}$ in a room temperature, whereas the precipitates between lead ion and other anions were observed largely in the solution of alkalinity, so that it seemed that lead could be remained in the state of non-soluble in plant and soil. The inhibition of germination and growth in the water culture was observed in 100ppm of lead, whereas the inhibition in the case of the soil culture was observed in 10000ppm of lead. The difference of the effected concentration between water and soil culture in germination and the growth was 100 times. When the seed and plant inhibited the growth in 5000ppm or 10000ppm of lead for five days were transferred to lead free Hoagland solution, the recovery of germination and growth was observed in three days. This growing recovery was different according to the kinds of plant and concentrations of lead. It seemed that plant growth could be inhibited by the inhibition of the metabolism concerned with the precipitates between lead iion and other anions.

  • PDF

Microbial Community Structure in Hexadecane- and Naphthalene-Enriched Gas Station Soil

  • Baek, Kyung-Hwa;Kim, Hee-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.7
    • /
    • pp.651-657
    • /
    • 2009
  • Shifts in the activity and diversity of microbes involved in aliphatic and aromatic hydrocarbon degradation in contaminated soil were investigated. Subsurface soil was collected from a gas station that had been abandoned since 1995 owing to ground subsidence. The total petroleum hydrocarbon content of the sample was approximately 2,100 mg/kg, and that of the soil below a gas pump was over 23,000 mg/kg. Enrichment cultures were grown in mineral medium that contained hexadecane (H) or naphthalene (N) at a concentration of 200 mg/l. In the Henrichment culture, a real-time PCR assay revealed that the 16S rRNA gene copy number increased from $1.2{\times}10^5$to $8.6{\times}10^6$with no lag phase, representing an approximately 70-fold increase. In the N-enrichment culture, the 16S rRNA copy number increased about 13-fold after 48 h, from $6.3{\times}10^4$to $8.3{\times}10^5$. Microbial communities in the enrichment cultures were studied by denaturing gradient gel electrophoresis and by analysis of 16S rRNA gene libraries. Before the addition of hydrocarbons, the gas station soil contained primarily Alpha- and Gammaproteobacteria. During growth in the H-enrichment culture, the contribution of Bacteriodetes to the microbial community increased significantly. On the other hand, during N-enrichment, the Betaproteobacteria population increased conspicuously. These results suggest that specific phylotypes of bacteria were associated with the degradation of each hydrocarbon.

Monitoring of petroleum hydrocarbon degradative potential of indigenous microorganisms in ozonated soil

  • ;;Rameshwar;Tatavarty
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.152-157
    • /
    • 2003
  • Diesel-contaminated soils were ozonated for different times (0 - 900 min) and incubated for 9 wk to monitor petroleum hydrocarbons (PH)-degradative potential of indigenous microorganisms in the soils. Increased ozonation time decreased not only concentration of PH but also number of microorganisms in the soils. Microorganisms in the ozonated soils increased during 9-wk incubation as monitored by culture- and nonculture-based methods. Higher (1-2 orders of magnitude) cell number was observed by quantitative analysis of soil DNA using probes detecting genes encoding 165 rRNA(rrn), naphthalene dioxygenase (nahA), toluene dioxygenase (todC), and alkane hydroxylase (alkB) than microbial abundance estimated by culture-based methods. Such PH-degraders were relatively a few or under detection limit in 900-min ozonated soil. Further PH-removal observed during the incubation period supported the presence of PH-degraders in ozonated soils. Highest reduction (25.4%) of total PH (TPH) was observed in 180-min ozonated soil white negligible reduction was shown in 900-min ozonated soil during the period, resulting in lowest TPH-concentration in 180-min ozonated soil among the ozonated soils. Microbial community composition in 9-wk incubated soils revealed slight difference between 900-min ozonated and unozonated soils as analyzed by whole cell hybridization using group-specific rRNA-targeted oligonucleotides. Results of this study suggest that appropriate ozonation and subsequent biodegradation by indigenous microorganisms may be a cost-effective and successful remediation strategy for PH-contaminated soils.

  • PDF

Paddy Rice Culture Experiment Using Treated Sewage Effluent From Constructed Wetland (인공습지 오수처리수를 이용한 벼재배 실험)

  • 윤춘경;함종화;우선호;김민희
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.2
    • /
    • pp.94-104
    • /
    • 2001
  • A pilot study was performed at the experimental field of Konkuk University in Seoul, to examine the feasibility of the constructed wetland system for sewage and the effect of treated sewage irrigation on the paddy rice culture and its soil characteristics. The constructed wetland performed well, in that effluent concentrations of pollutants were significantly lower than concentrations of the influent. Median removal efficiencies of BOD$_{5}$ was about 78% and slightly lower during winter. Removal efficiencies form TN and TP were approximately 48 and 21%, respectively, and relatively less effective than that of BOD$_{5}$. Irrigation of treated sewage to paddy rice culture did not affect adversely in both growth and yield of rice. Instead, plots of treated sewage irrigation showed up to 50% more yield in average than the control plot. It implies that treated sewage irrigation might be beneficial to rice culture rather than detrimental as long as it is treated adequately and used properly. Soil was sampled and analyzed before transplanting and after harvesting. pH was slightly increased due to irrigation water, but it may not be concerned as long as the treated sewage is within the normal range. EC was increased in first year but decreased in second year, therefore salts accumulation in the soil could be less concerned. OM and CES was slightly increased, which might be beneficial on growing plants. TN did not show apparent pattern. Available phosphorus was decreased after rice culture, but the quantity of phosphorus(TP-available phosphorus) was rather increased which implies that excessive phosphorus supply may result in phosphorus accumulation in the soil. Overall, the constructed wetland was thought to be an effective sewage treatment alternative, and treated sewage could be reused as a supplemental source of irrigation water for paddy rice culture without causing adverse effect as long as it is treated adequately and used properly. For full-scale application, further investigation should be followed on environmental risk assessment, tolerable water quality, and fraction of supplemental irrigation.ion.

  • PDF

Biocontrol Effect of Gliocladium virens G1 and Soil Amendment on Astragal Stem Rot Caused by Rhizoctonia solani

  • Chung, Bong-Koo;Yun, Kyung-Ho
    • Mycobiology
    • /
    • v.28 no.4
    • /
    • pp.180-184
    • /
    • 2000
  • In order to find an environment-friendly method to suppress astragal stem rot caused by the isolates of Rhizoctonia solani AG 1 and AG 4, we tested an antagonistic fungus Gliocladium virens G1 was evaluated as a biocontrol agent and estimated inorganic compounds and organic materials were tested for their effect of the disease suppression. G. virens G1 effectively inhibited mycelial growth in a dual culture and caused mycelial lysis in the culture filtrate. No adverse effect was observed when examined for seed germination and seedling growth. Promoted seedling growth was observed with the seed treatment. Seeds of astragal plant were germinated higher in the sterile soil than the natural soil. Of 14 inorganics tested, alum, aluminum sulfate and calcium oxide significantly suppressed the mycelial growth and sclerotial germination. Milled pine bark and oak sawdust also suppressed the mycelial growth. Soil amended with 1% of G. virens G1 composted with pine bark (w/v) significantly controlled astragal stem rot in the glasshouse experiments.

  • PDF