• Title/Summary/Keyword: soil classification

Search Result 602, Processing Time 0.027 seconds

Influences of Chinese Cabbage Growth and Soil Salinity to Alternative Irrigation Waters (대체관개 용수에 의한 배추생육 및 토양 염류도에 미치는 영향)

  • Shin, Joung-Du;Park, Sang-Won;Kim, Won-Il;Lee, Jong-Sik;Yun, Sun-Gang;Eom, Ki-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.25-30
    • /
    • 2007
  • Objective of this experiment was to investigate the growth effects of Chinese cabbage and soil salinity to alternative irrigation waters for drought periods. The treatments were consisted of the discharge water from industrial wastewater treatment plant (DIWT), the discharge water from municipal wastewater treatment plant (DMWT) and ground water as the control. For the chemical compositions of alternative water, it appeared that concentrations of the Ni+ and SAR values in DIWT were over the reuse criteria of other countries for irrigation, but CODcr concentration in DMWT was higher than the reuse criteria for agricultural irrigation. According to classification of water by ECi value, DIWT and DMWT are ranged from 0.7 to 2.0dSm1, slight salinity. Average harvest indexes were 0.64 for DIWT and 0.63 for DMWT as compared to 0.61 of the control regardless of irrigation periods. SAR value in soil was increased with prolonging the irrigation periods at head forming stage, but not much difference except for 30 days of irrigation period at harvesting time for DIWT. However, it was not much difference along with irrigation periods through the growth stages for DMWT as compared with the groundwater. At harvesting time, average ECe for the soil irrigated with alternative agricultural waters was 0.017dSm1 for its DIMT and 0.036dSm1 for its DMWT as compared to 0.013dSm1 of its groundwater as the control. For NH4N concentrations, it observed that there were no differences among the treatments with different irrigation periods at head forming stage in soil after irrigation. Also, NO3N concentration in soil was increased up to 20 days after irrigation, and then decreased at 30 days after irrigation with DMWT at head forming stage. The Ni+ concentration in upper layer soil (0-15 cm) irrigated with DIWT was increased with prolonging the irrigation period at head forming stage, but it was dramatically decreased and almost constant in all the treatments at harvesting time. Therefore, it might be concluded that there was potentially safe to irrigate the discharge water from municipal wastewater treatment plant for 20 days after transplanting to drought periods with cultivating the Chinese cabbage.

A Study on characteristics of planosols in korea -Part I Yeongog series (우리나라에 분포(分布)된 반층토(盤層土)의 특성(特性)에 관(關)한 연구(硏究) -제(第)1보(報) 연용통(延谷統)에 관(關)하여)

  • Um, Ki Tae;Cho, Seong Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.8 no.2
    • /
    • pp.45-51
    • /
    • 1975
  • The morphological, physical, chemical, and mineralogical characteristics of planosols in Korea were studied in an effort to establish the suitabilition of the planosols for agricultural development. The Yeongog series which are planosols were established in Korea. Results from the Yeongog series are briefly as follows : 1. Morphologically, the surface soils are brown to dark brown friable loam and subsoils are of varied colors but mainly are dark brown, black and pale brown mottles. The texture of these horizons are silty clay loam with moderate to strong platy structure and clay cutans are on the ped faces. The consistences of these horizons are extremely compact and hard when moist and sticky, plastic when wet. The substrata show varied soil colors and loam to clay loam. 2. Physically, the clay content of the Yeongog soils is highest in the subsoils and gradually decreases below the subsoils. Water holding capacity and bulk desity is higher than in other mineral soils. 3. Chemically, the organic matter content is low and soil reaction ranges from very strongly to strongly acid. The cation exchange capacity is medium and base saturation a high. Active iron, easily reducible manganese and available silicate are high compared with normal soils. 4. In chemical composition of clay fraction of the Yeongog series, sesquioxide ratio, Fe2O3, K2O and MgO are high. The cation exchange capacity of the clay fraction is also very high. 5. The clay minerals in Yeongog series are mainly kaoline, vermiculite with Al interlayers and illite. The quarts, primary minerals are in the Yeongog soils. 6. These soils are formed in a warm, humid climate under native grasses on the terraces and rolling or hilly footslopes. In soil classification, the Yeongog soils are classified planosols with claypan. According to 7th approximation system in U.S.A., the Yeongog series are classified as Fragiudalfs because they have an argillic horizon, a hard pan and a high base saturation which is more than 35 percent and classified as Eutric Planosols by FAO/UNESCO classification system.

  • PDF

Estimation of Paddy Field Area in North Korea Using RapidEye Images (RapidEye 영상을 이용한 북한의 논 면적 산정)

  • Hong, Suk Young;Min, Byoung-Keol;Lee, Jee-Min;Kim, Yihyun;Lee, Kyungdo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1194-1202
    • /
    • 2012
  • Remotely sensed satellite images can be applied to monitor and obtain land surface information on inaccessible areas. We classified paddy field area in North Korea based on on-screen digitization with visual interpretation using 291 RapidEye satellite images covering the whole country. Criteria for paddy field classification based on RapidEye imagery acquired at different time of rice growth period was defined. Darker colored fields with regular shape in the images with false color composite from early May to late June were detected as rice fields. From early July to late September, it was hard to discriminate rice canopy from other type of vegetation including upland crops, grass, and forest in the image. Regular form of readjusted rice field in the plains and uniform texture when compared with surrounding vegetation. Paddy fields classified from RapidEye imagery were mapped and the areas were calculated by administrative district, province or city. Sixty six percent of paddy fields (3,521km2) were distributed in the west coastal regions including Pyeongannam-do, Pyeonganbuk-do, and Hwanghaenam-do. The paddy field areas classified from RapidEye images showed less than 1% of difference from the paddy field areas of North Korea reported by FAO/WFP (Food and Agriculture Organization/World Food Programme).

Studies on the Morphological, Physical and Chemical Properties of the Korean Forest soil in Relation to the Growth of Korean White Pine and Japanese Larch (한국산림토양의 형태학적 및 이화학적성질과 낙엽송, 잣나무의 성장(成長)에 관한 연구(硏究))

  • Chung, In-Koo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.12 no.4
    • /
    • pp.189-213
    • /
    • 1980
  • 1. Aiming at supply of basic informations on tree species siting and forest fertilization by understanding of soil properties that are demanded by each tree species through studies of forest soil's morphological, physical and chemical properties in relation to tree growth in our country, the necessary data have been collected in the last 10 years, are quantified according to quantification theory and are analyzed in accordance with multi-variate analysis. 2. Test species, larch and the Korean white pine, are plantable in extensive areas from mid to north in the temperate zone and are the two most recommended reforestation tree species in Korea. However, their respective site demands are not known and they have been in confusion or considered demanding the same site during reforestation. When the Korean white pine is planted in larch sites, it has shown relatively good growth. But, when larch is planted in the Korean white pine site it can be hardly said that the larch growth is good. To understand on such a difference soil factors have been studied so as to see how the soil's morphological, physical and chemical factors affect tree growth helped with the electronic computer. 3. All the stands examined are man-made mature forests. From 294 larch plots and 259 white pine plots dominant trees are cut as samples and through stem analysis site index is determined. For each site index soil profiles are made in the related forest-land for analysis. Soil samples are taken from each profile horizon and forest-land productivity classification tables are worked out through physical and chemical analysis of the soil samples for each tree species for the study of relationships between physical, chemical and the combined physical/chemical properties of soil and tree growth. 4. In the study of relationships between physical properties of soil and tree growth it is found out that larch growth is influenced by the following factors in the order of deposit form, soil depth, soil moisture, altitude, relief, soil type, depth of A-horizon, soil consistency content of organic matter soil texture bed rock gravel content aspect and slope. For the Korean white pine the influencing factors' order is soil type, soil consistency bed rock aspect depth of A-horizon soil moisture altitude relief deposit form soil depth soil texture gravel content and slope. 5. In the study of relationships between chemical properties of soil and tree growth it is found out that larch growth is influenced by the following factors in the order of base saturation organic matter CaO C/N ratio, effective P2O5 PH.exchangeable K2O T-N MgO C E C Total Base and Na. For the Korean white pine the influencing factors' order is effective P2O5 Total Base T-N Na C/N ratio PH CaO base saturation organic matter exchangeable K2O C E C and MgO. 6. In the study of relationships between the combined physical and chemical properties of soil and tree growth it is found out that larch growth is influenced by the following factors in the order of soil depth deposit form soil moisture PH relief soil type altitude T-N soil consistency effective P2O5 soil texture depth of A-horizon Total Base exchangeable K2O and base saturation. For the Korean white pine the influencing factors' order is soil type soil consistency aspect effective P2O5 depth of A-horizon exchangeable K2O soil moisture Total Base altitude soil depth base saturation relief T-N C/N ratio and deposit from. 7. In the multiple regression of forest soil's physical properties larch's correlation coefficient is 0.9272 and for the Korean white pine it is 0.8996. With chemical properties larch has 0.7474 and the Korean white pine has 0.7365. So, the soil's physical properties are found out more closely related with tree growth than chemical properties. However, this seems due to inadequate expression of soil's chemical factors and it is proved that the chemical properties are not less important than the physical properties. In the multiple regression of the combined physical and chemical properties consisting of important morphological and physical factors as well as chemical factors of forest soils larch's multiple correlation coefficient is found out to be 0.9434 and for the Korean white pine it is 0.9103 leading to the highest correlation. 8. As shown in the partial correlation coefficients larch needs deeper soil depth than the Korean white pine and in the deposit form colluvial and creeping soils are demanded by the larch. Adequately moist to too moist should be soil moisture and PH should be from 5.5 to 6.1 for the larch. Demands of T-N soil texture and soil nutrients are higher for the larch than the Korean white pine. Thus, soil depth, deposit form, relief soil moisture PH N altitude and soil texture are good indicators for species sitings with larch and the Korean white pine while soil type and soil consistency are indicative only limitedly of species sitings due to their wide variation as plantation environments. For larch siting soil depth deposit form relief soil moisture PH soil type N and soil texture are indicators of good growth and for Korean white pine they are soil type soil consistency effective P2O5 and exchangeable K2O, which is demanded more by the Korean white pine than larch generally. 9. Physical properties of soil has been known as affecting tree growth to greatest extent so far. However, as a result of this study it is proved through computer analysis that chemical properties of soil are not less important factors for tree growth than chemical properties and site demands for larch and the Korean white pine that have been uncertain So far could be clarified.

  • PDF

Percentile Approach of Drought Severity Classification in Evaporative Stress Index for South Korea (Evaporative Stress Index (ESI)의 국내 가뭄 심도 분류 기준 제시)

  • Lee, Hee-Jin;Nam, Won-Ho;Yoon, Dong-Hyun;Hong, Eun-Mi;Kim, Taegon;Park, Jong-Hwan;Kim, Dae-Eui
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.63-73
    • /
    • 2020
  • Drought is considered as a devastating hazard that causes serious agricultural, ecological and socio-economic impacts worldwide. Fundamentally, the drought can be defined as temporarily different levels of inadequate precipitation, soil moisture, and water supply relative to the long-term average conditions. From no unified definition of droughts, droughts have been divided into different severity level, i.e., moderate drought, severe drought, extreme drought and exceptional drought. The drought severity classification defined the ranges for each indicator for each dryness level. Because the ranges of the various indicators often don't coincide, the final drought category tends to be based on what the majority of the indicators show and on local observations. Evaporative Stress Index (ESI), a satellite-based drought index using the ratio of potential and actual evaporation, is being used as a index of the droughts occurring rapidly in a short period of time from studies showing a more sensitive and fast response to drought compared to Standardized Precipitation Index (SPI), and Palmer Drought Severity Index (PDSI). However, ESI is difficult to provide an objective drought assessment because it does not have clear drought severity classification criteria. In this study, U.S. Drought Monitor (USDM), the standard for drought determination used in the United States, was applied to ESI, and the Percentile method was used to classify drought categories by severity. Regarding the actual 2017 drought event in South Korea, we compare the spatial distribution of drought area and understand the USDM-based ESI by comparing the results of Standardized Groundwater level Index (SGI) and drought impact information. These results demonstrated that the USDM-based ESI could be an effective tool to provide objective drought conditions to inform management decisions for drought policy.

Region of Interest (ROI) Selection of Land Cover Using SVM Cross Validation (SVM 교차검증을 활용한 토지피복 ROI 선정)

  • Jeong, Jong-Chul;Youn, Hyoung-Jin
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.1
    • /
    • pp.75-85
    • /
    • 2020
  • This study examines machine learning cross-validation to utilized create ROI for classification of land cover. The study area located in Sejong and one KOMPSAT-3A image was used in this analysis: procedure on October 28, 2019. We used four bands(Red, Green, Blue, Near infra-red) for learning cross validation process. In this study, we used K-fold method in cross validation and used SVM kernel type with cross validation result. In addition, we used 4 kernels of SVM(Linear, Polynomial, RBF, Sigmoid) for supervised classification land cover map using extracted ROI. During the cross validation process, 1,813 data extracted from 3,500 data, and the most of the building, road and grass class data were removed about 60% during cross validation process. Based on this, the supervised SVM linear technique showed the highest classification accuracy of 91.77% compared to other kernel methods. The grass' producer accuracy showed 79.43% and identified a large mis-classification in forests. Depending on the results of the study, extraction ROI using cross validation may be effective in forest, water and agriculture areas, but it is deemed necessary to improve the distinction of built-up, grass and bare-soil area.

Disaster risk predicted by the Topographic Position and Landforms Analysis of Mountainous Watersheds (산지유역의 지형위치 및 지형분석을 통한 재해 위험도 예측)

  • Oh, Chae-Yeon;Jun, Kye-Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 2018
  • Extreme climate phenomena are occurring around the world caused by global climate change. The heavy rains exceeds the previous record of highest rainfall. In particular, as flash floods generate heavy rainfall on the mountains over a relatively a short period of time, the likelihood of landslides increases. Gangwon region is especially suffered by landslide damages, because the most of the part is mountainous, steep, and having shallow soil. Therefore, in this study, is to predict the risk of disasters by applying topographic classification techniques and landslide risk prediction techniques to mountain watersheds. Classify the hazardous area by calculating the topographic position index (TPI) as a topographic classification technique. The SINMAP method, one of the earth rock predictors, was used to predict possible areas of a landslide. Using the SINMAP method, we predicted the area where the mountainous disaster can occur. As a result, the topographic classification technique classified more than 63% of the total watershed into open slope and upper slope. In the SINMAP analysis, about 58% of the total watershed was analyzed as a hazard area. Due to recent developments, measures to reduce mountain disasters are urgently needed. Stability measures should be established for hazard zone.

A TBM data-based ground prediction using deep neural network (심층 신경망을 이용한 TBM 데이터 기반의 굴착 지반 예측 연구)

  • Kim, Tae-Hwan;Kwak, No-Sang;Kim, Taek Kon;Jung, Sabum;Ko, Tae Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.13-24
    • /
    • 2021
  • Tunnel boring machine (TBM) is widely used for tunnel excavation in hard rock and soft ground. In the perspective of TBM-based tunneling, one of the main challenges is to drive the machine optimally according to varying geological conditions, which could significantly lead to saving highly expensive costs by reducing the total operation time. Generally, drilling investigations are conducted to survey the geological ground before the TBM tunneling. However, it is difficult to provide the precise ground information over the whole tunnel path to operators because it acquires insufficient samples around the path sparsely and irregularly. To overcome this issue, in this study, we proposed a geological type classification system using the TBM operating data recorded in a 5 s sampling rate. We first categorized the various geological conditions (here, we limit to granite) as three geological types (i.e., rock, soil, and mixed type). Then, we applied the preprocessing methods including outlier rejection, normalization, and extracting input features, etc. We adopted a deep neural network (DNN), which has 6 hidden layers, to classify the geological types based on TBM operating data. We evaluated the classification system using the 10-fold cross-validation. Average classification accuracy presents the 75.4% (here, the total number of data were 388,639 samples). Our experimental results still need to improve accuracy but show that geology information classification technique based on TBM operating data could be utilized in the real environment to complement the sparse ground information.

Analysis on the Relation between the Morphological Physical and Chemical Properties of Forest Soils and the Growth of the Pinus koraiensis Sieb. et Zucc. and Larix leptolepis Gord by Quantification (수량화(數量化)에 의(依)한 우리나라 삼림토양(森林土壤)의 형태학적(形態学的) 및 이화학적(理化学的) 성질(性質)과 잣나무 및 낙엽송(落葉松)의 생장(生長) 상관분석(相關分析))

  • Chung, In Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.53 no.1
    • /
    • pp.1-26
    • /
    • 1981
  • 1. Aiming at supply of basic informations on tree species siting and forest fertilization by understanding of soil properties that are demanded by each tree species through studies of forest soil's morphological, physical and chemical properties in relation to tree growth in our country, the necessary data have been collected in the last 10 years, are quantified according to quantification theory and are analyzed in sccordance with multi-variate analysis. 2. Test species, japanese larch (Larix leptolepis Gord) and the Korean white pine, (pinus koraiensis S et Z.) are plantable in extensive areas from mid to north in the temperate forest zone and are the two most recommended reforestation tree species in Korea. However, their respective site demands are little known and they have been in confusion or considered demanding the same site during reforestation. When the Korean white pine is planted in larch sites, it has shown relatively good growth, but, when Japanese larch is planted in Korean white pine site it can be hardly said that the Japanese Larch growth is good. To understand on such a difference soil factors have been studied so as to see how th soil's morphological, physical and chemical factors affect tree growth helped with the electronic computer. 3. All the stands examined are man-made mature forests. From 294 Japanese larch plots and 259 Korean white pine plots dominant trees are cut as samples and through stem analysis site index is determined. For each site index soil profiles are made in the related forest-land for analysis. Soil samples are taken from each profile horizon and forest-land productivity classification tables are worked out through physical and chemical analyses of the soil samples for each tree species for the study of relationships between physical, chemical and the combined physical/properties of soil and tree growth. 4. In the study of relationships between physical properties of soil and tree growth it is found out that Japanese larch growth is influenced by the following factors in the decreasing order of weight deposit form, soil depth, soil moisture, altitude, relief, soil type, depth a A-horizon, soil consistency, content of organic matter, soil texture, bed rock, gravel content, aspect and slope. For the Korean white pine the influencing factors' order is soil type, soil consistency, bed rock, aspect, depth of A-horizon, soil moisture, altitude, relief, deposit form, soil depth, soil texture, gravel content and slope. 5. In the study of relationships between chemical properties of soil and tree growth it is found out that Japanese larch growth is influenced by the following factors in the order of base saturation, organic matter, CaO, C/N ratio, effective P2O5, PH, exchangeable, K2O, T-N, MgO, CEC, Total Base and Na. For the Korean white pine the influencing factors' order is effective P2O5, Total Base, T-N, Na, C/N ratio, PH, CaO, base saturation, organic matter, exchangeable K2O, CEC and MgO. 6. In the study of relationships between the combined physical and chemical properties of soil and tree growth it is found out that Japanese larch growth is influenced by the following factors in the order of soil depth, deposit form, soil moisture, PH, relief, soil type altitude, T-N, soil consistency, effective P2O5, soil texture, depth of A-horizon, Total Base, exchangeable K2O and base saturation. For the Korean white pine the influencing factors' order is soil type, soil consistency, aspect, effective P2O5, depth of A-horizon, exchangeable K2O, soil moisture, Total Base, altitude, soil depth, base saturation, relief, T-N, C/N ratio and deposit form. 7. In the multiple correlation of forest soil's physical properties larch's correlation coefficient for Japanese Larch is 0.9272 and for Korean white pine, 0.8996. With chemical properties larch has 0.7474 and Korean white pine has 0.7365. So, the soil's physical properties are found out more closely related with tree growth than chemical properties. However, this seems due to inadequate expression of soil's chemical factors and it is proved that the chemical properities are not less important than the physical properties. In the multiple correlation of the combined physical and chemical properties consisting of important morphological and physical factors as well as chemical factors of forest soils larch's multiple correlation coefficient is found out to be 0.9434 and for Korean white pine it is 0.9103 leading to the highest correlation. 8. As shown in the partial correlation coefficients Japanese larch needs deeper soil depth than Korean white pine and in the deposit form of colluvial and creeping soils are demanded by the larch. Moderately moist to not moist should be soil moisture and PH should be from 5.5 to 6.1 for the larch. Demands of T-N, soil texture and soil nutrients are higher for the larch than the Korean white pine. Thus, soil depth, deposit form, relief, soil moisture, PH, N, altitude and soil texture are good indicators for species sitings with larch and the Korean white pine while soil type and soil consistency are indicative only limitedly of species sitings due to their wide variations as plantation environments. For the larch siting soil depth, deposit form, relief, soil moisture, pH, soil type, N and soil texture are indicators of good growth and for the Korean white pine they are soil type, soil consistency, effective P2O5 and exchangeable K2O. In soil nutrients larch has been found out demanding more than the Korean white pine except K2O, which is demanded more by the Korean white pine than Japanese larch generally. 9. Physical properties of soil has been known as affecting tree growth to the greatest extent so far. However, as a result of this study it is proved through computer analysis that chemical properties of soil are not less important factors for tree growth than chemical properties and site demands for the Japanese larch and the Korean white pine that have been uncertain so far could be clarified.

  • PDF

The Morphology, Physical and Chemical Characteristics of the Red-Yellow Soils in Korea (우리나라 전토양(田土壤)의 특성(特性) (저구릉(低丘陵), 산록(山麓) 및 대지(臺地)에 분포(分布)된 적황색토(赤黃色土)를 중심(中心)으로))

  • Shin, Yong Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.1
    • /
    • pp.35-52
    • /
    • 1973
  • Red Yellow Soils occur very commonly in Korea and constitute the important upland soils of the country which are either presently being cultivated or are suitable for reclaiming and cultivating. These soils are distributed on rolling, moutain foot slopes, and terraces in the southern and western parts of the central districts of Korea, and are derived from granite, granite gneiss, old alluvium and locally from limestone and shale. This report is a summary of the morphology, physical and chemical characteristics of Red Yellow Soils. The data obtained from detailed soil surveys since 1964 are summarized as follows. 1. Red-Yellows Soils have an A, Bt, C profile. The A horizon is dark colored coarse loamy or fine loamy with the thin layer of organic matter. The B horizon is dominantly strong brown, reddish brown or yellowish red, clayey or fine loamy with clay cutans on the soil peds. The C horizon varies with parent materials, and is coarser texture and has a less developed structure than the Bt horizon. Soil depth, varied with relief and parent materials, is predominantly around 100cm. 2. In the physical characteristics, the clay content of surface soil is 18 to 35 percent, and of subsoil is 30 to 90 percent nearly two times higher than the surface soil. Bulk density is 1.2 to 1.3 in the surface soil and 1.3 to 1.5 in the subsoil. The range of 3-phase is mostly narrow with 45 to 50 percent in solid phase, 30 to 45 percent in liquid one, and 5 to 25 percent in gaseous state in the surface soil; and 50 to 60 solid, 35 to 45 percent liquid and less than 15 percent gaseous in the subsoil. Available soil moisture capacity ranges from 10 to 23 percent in the surface soil, and 5 to 16 percent in the subsoil. 3. Chemically, soil reaction is neutral to alkaline in soils derived from limestone or old fluviomarine deposits, and acid to strong acid in other ones. The organic matter content of surface soil varying considerably with vegetation, erosion and cultivation, ranges from 1.0 to 5.0 percent. The cation exchange capacity is 5 to 40 me/100gr soil and closely related to the content of organic matter, clay and silt. Base saturation is low, on the whole, due to the leaching of extractable cations, but is high in soils derived from limestone with high content of lime and magnesium. 4. Most of these soils mainly contain halloysite (a part of kaolin minerals), vermiculite (weathered mica), and illite, including small amount of chlorite, gibbsite, hematite, quartz and feldspar. 5. Characteristically they are similar to Red Yellow Podzolic Soils and a part of Reddish Brown Lateritic Soils of the United States, and Red Yellow Soils of Japan. According to USDA 7th Approximation, they can be classified as Udu Its or Udalfs, and in FAO classification system to Acrisols, Luvisols, and Nitosols.

  • PDF