• Title/Summary/Keyword: soil cellobiohydrolase

Search Result 6, Processing Time 0.022 seconds

Enzymatic Properties of Cellobiohydrolase immobilized in Soil (토양내에 고정화되어 있는 Cellobiohydrolase의 효소학적 성질)

  • 정종각;양영기;맹진수;이영하
    • Korean Journal of Microbiology
    • /
    • v.26 no.2
    • /
    • pp.122-128
    • /
    • 1988
  • The enzymatic properties of soil cellobiohydrolase were examined and compared with those of cellobiohydrolase-active extracts from soil in the forms of enzyme-humic complex and humicfree enzyme, and cellobiohydrolase partially pruified from Aspergillus niger. The pH optima of soil cellobiohydrolase and cellobiohydrolase-humic complex were greater by 1.5-3.0 pH units than those of cellobiohydrolase in humic-free extract and from A. niger. Soil cellobiohydrolase and cellobiohydrolase-humic complex were remarkably resistant to thermal denaturation and proteolysis. These results confirm that cellobiohydrolase in soil is atable in conditions which rapidly inactivate microbial cellobiohydrolase and that its stability is due to the immobilization of this enzyme by association with humic substances. The Michaelis-Menten constants (Km) for soil, cellobiohydrolase-humic complex, humic free extract and cellobiohydrolase from A. niger were 22.1mg/ml, 11.3mg/ml, 10.6mg/ml and 4.5 mg/ml of Avicel, respectively.

  • PDF

Sources and Variations of Extracellular Enzymes in a Wetland Soil (습지 토양에서 체외효소의 근원과 변화)

  • Freeman, Chris;Kang, Ho-Jeong
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.4 s.100
    • /
    • pp.326-330
    • /
    • 2002
  • A wetland soil was sterilised by two methods and changes in microbial enzyme activities were assessed. The short-term effects were determined by toluene addition, while the longer-term effects of elimination was monitored by ${\gamma}$-radiation. The changes in ${\beta}$- glucosidase, ${\beta}$-xylosidase, cellobiohydrolase, phosphatase, arylsulphatase, and N-acetylglucosaminidase activities were determined by using methylumbelliferyl model substrates and comparing with the activities of control samples. Toluene addition induced different responses of enzymes. For example, phosphatase activity increased by the treatment while ${\beta}$-glucosidase and arylsulphatase activities decreased. In contrast, ${\gamma}$-radiation decreased all enzyme activities compared to control by 40-80%. The overall results of the toluene and ${\gamma}$-radiation experiments indicate that the large amounts of enzymes are stabilised outside of living cells, at least in the short term, but that the persistence of enzymes is maintained by de-novo synthesis of microbes.

Cellulose Degradation and Extracellulat Enzymatic Activity of the Mud Flat in Sunchon Bay (순천만 갯벌 토양의 섬유소 분해능 및 체외효소 활성)

  • 백근식;최지혁;성치남
    • Korean Journal of Microbiology
    • /
    • v.36 no.2
    • /
    • pp.130-135
    • /
    • 2000
  • Decomposition rate of organic matiter in the mud flat of Sunchon Bay was estimated. Physicochemical parameters, cellulose degradation rate. distribution of heterotrophic bacteria, and extracellular enzymatic activities were measured from August 1997 to July 1998. Soil temperatures, water contents, concentration of $PO_4$-P and organic matter were -1-~$30^{\circ}C$, 42.1-53.1%, 0.0779-0.1961 mgig and 1.99-7.64%, respectively. Decomposition rate of cellulose film ranged from 7.7 to 100%imonth, high in summer and low in winter. The number of heterotrophic bacteria ranged from $0.87{\times}10^6 to 3.6{\times}10^7 $CUFsIg dq soil. Enzymatic activities of phosphatase, $\alpha$-D-gluEosidase, $\beta$-D-glucosidase and cellobiohydrolase, which were measured as decomposition rate of methylumbelliferyl(MLiF)-substrate, were 152.23-1779.80 nMIhr, 2.67-202.18 nM/hr, 5.03-258.26 M h r and 3.42-63.07 nM/hr, respectively Cellulose degradaaon rate and extracellular extracellular enzymatic activities were conelated with each other, and showed high correlation coefticiency with soil temperature.

  • PDF

Identification of Multiple Active Forms in Cellulase-xylanase of Aspergillus sp. 8-17 by Active Staining

  • Shin, Pyung-Gyun;Ahn, Jun-Bae;Kim, Chang-Young;Jeong, Won-Hwa;Ryu, Jin-Chang
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.49-52
    • /
    • 1998
  • A fungal strain able to produce filter paper activity (FPase) was isolated from soil by testing the ability to hydrolyze using filter paper. The isolated strain was identified as an Aspergilus sp. judging from its morphological and microscopical characteristics. The cellulase-xylanase system of Aspergillus sp. 8-17 was detected in situ after gel electrophoresis in the presence of SDS and showed that each protein pattern had a distinct polypeptide composition. ${\beta}$-1,4-Glucanase, cellobiohydrolase, and xylanase activity profiles differ from protein patterns. The Aspergillus sp. 8-17 hydrolytic enzymes responsible for the hydrolysis of ${\beta}$-glucan, MUC, and xylan have multiple active forms.

  • PDF

Bacterial and fungal community composition across the soil depth profiles in a fallow field

  • Ko, Daegeun;Yoo, Gayoung;Yun, Seong-Taek;Jun, Seong-Chun;Chung, Haegeun
    • Journal of Ecology and Environment
    • /
    • v.41 no.9
    • /
    • pp.271-280
    • /
    • 2017
  • Background: Soil microorganisms play key roles in nutrient cycling and are distributed throughout the soil profile. Currently, there is little information about the characteristics of the microbial communities along the soil depth because most studies focus on microorganisms inhabiting the soil surface. To better understand the functions and composition of microbial communities and the biogeochemical factors that shape them at different soil depths, we analyzed microbial activities and bacterial and fungal community composition in soils up to a 120 cm depth at a fallow field located in central Korea. To examine the vertical difference of microbial activities and community composition, ${\beta}$-1,4-glucosidase, cellobiohydrolase, ${\beta}$-1,4-xylosidase, ${\beta}$-1,4-N-acetylglucosaminidase, and acid phosphatase activities were analyzed and barcoded pyrosequencing of 16S rRNA genes (bacteria) and internal transcribed spacer region (fungi) was conducted. Results: The activity of all the soil enzymes analyzed, along with soil C concentration, declined with soil depth. For example, acid phosphatase activity was $125.9({\pm}5.7({\pm}1SE))$, $30.9({\pm}0.9)$, $15.7({\pm}0.6)$, $6.7({\pm}0.9)$, and $3.3({\pm}0.3)nmol\;g^{-1}\;h^{-1}$ at 0-15, 15-30, 30-60, 60-90, and 90-120 cm soil depths, respectively. Among the bacterial groups, the abundance of Proteobacteria (38.5, 23.2, 23.3, 26.1, and 17.5% at 0-15, 15-30, 30-60, 60-90, and 90-120 cm soil depths, respectively) and Firmicutes (12.8, 11.3, 8.6, 4.3, and 0.4% at 0-15, 15-30, 30-60, 60-90, and 90-120 cm soil depths, respectively) decreased with soil depth. On the other hand, the abundance of Ascomycota (51.2, 48.6, 65.7, 46.1, and 45.7% at 15, 30, 60, 90, and 120 cm depths, respectively), a dominant fungal group at this site, showed no clear trend along the soil profile. Conclusions: Our results show that soil C availability can determine soil enzyme activity at different soil depths and that bacterial communities have a clear trend along the soil depth at this study site. These metagenomics studies, along with other studies on microbial functions, are expected to enhance our understanding on the complexity of soil microbial communities and their relationship with biogeochemical factors.

Importance of Extracellular Enzyme Activities in Northern Peatland Biogeochemistry-Possible Coupling with Trace Gas Emission and DOC Dynamics (북구 이탄습지의 생지화학적 반응에 있어서 체외효소의 중요성-미량기체 발생량 및 용존유기탄소 동태와의 연관성에 대하여)

  • Freeman, Chris;Park, Seok-Soon;Kang, Ho-Jeong
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.4 s.118
    • /
    • pp.435-444
    • /
    • 2006
  • A suite of extracellular enzyme activities involved in organic carbon decomposition were determined in three northern peatlands (a bog, a fen, and a swamp) over a 12 month period along with trace gas ($CO_2$ and $N_2O$) flux and DOC dynamics in the wetlands. The activities varied $0.008-0.066\;{\mu}mole\;g^{-1}\;min^{-1}$, $0.003-0.021\;{\mu}mole\;g^{-1}\;min^{-1}$, $0.003-0.016\;{\mu}mole\;g^{-1}\;min^{-1}$, $0.004-0.047\;{\mu}mole\;g^{-1}\;min^{-1}$, for ${\beta}-glucosidase$, cellobiohydrolase, ${\beta}-xylosidase$, and N-acetylglucosaminidase, respectively. In general, the activities were highest in the forested swamp followed by the fen and the bog. When the data from three wetlands are combined, the enzyme activities exhibited significant positive correlations with trace gas emission and available carbon. Further, the average activity of 4 enzymes explained about 20-40% of the variations of trace gas emssion and available carbon. The results indicate that enzymes related to the mineralization of organic carbon may play an important role in trace gas flux and DOC dynamics in northern peatlands.