• Title/Summary/Keyword: soil application

Search Result 4,097, Processing Time 0.029 seconds

The Effect of Long-term Application of Different Organic Material Sources on Chemical Properties of Upland Soil (유기물원이 다른 퇴비연용이 밭토양의 화학성 변화에 미치는 영향)

  • Kim, Jong-Gu;Lee, Kyeong-Bo;Lee, Sang-Bok;Lee, Deog-Bae;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.416-431
    • /
    • 2000
  • The objective of this study was to determine the effects of various kinds of composts on the change of soil chemical properties in upland soils. Field experiments were conducted in the loam and sandy loam soils. Various kinds of composts such as poultry manure compost(PMC), cow manure compost(CMC), human excrement sludge(HES), and food industrial sludge compost(FISC) were applied annually at rates of 0, 40, and $80Mg\;ha^{-1}$ to soils grown with soybean and maize plants for 4 years during 1994 to 1997. The results of this study were as follows : The continuous application of human excrement sludge decreased soil pH up to 4.4~5.0, while other compost treatments increased soil pH compared with control plot. The EC increased initially and showed their maximum values at 20days after compost application, and then decreased up to 40 days, thereafter kept a certain level. The available phosphorous accumulated at 0~20cm depth in loam soil, and 0~50cm in sandy loam soil. Annual accumulation rates were 17% higher in sandy loam soil than loam soil. The more compost application rates and times, the higher base saturation percentage increased in upland soils. Four year's application at a rate of $80Mg\;ha^{-1}$ per year increased the base saturation percentage to 87~97% compared with 45% at control plot in the loam soil. While in sandy loam soil only three year's application of same rate increased the base saturation percentage to 81~92% compared with 30.4% at control plot. The average annual increasing rate of base saturation percentage at the same application rates of composts were higher in sandy loam soil by 2.0~3.7 times than in loam soil. The application of compost increased the exchangeable Ca, Mg, and K contents of soils by 2, 2~3, and 3~5 times, respectively, compared with the control. The contents of exchangeable cations were high in surface soil, and decreased with increase of soil depths. In the case of heavy metal content, there were no difference at the application of PMC and CMC but Ni, Fe, Zn, Cu was increased a little when the HES applied, and Ni and Cr was increased application with FISC.

  • PDF

Effects of Cattle Manure Application on the Soil Properties , Yield Performance and Quality of Silage Corn Cultivated on Paddy land (전전환 논에서 우분시용이 토양화학성 및 Silage 옥수수의 수량과 품질에 미치는 영향)

  • 진현주;양종성;김정갑;정의수
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.16 no.1
    • /
    • pp.81-86
    • /
    • 1996
  • Silage wm(cv, Gwanganok) was cultivated during 1991-1994 on paddy land as a rotational cropping system of rice, to evaluate the effect of cattle manure application on the soil characteristics, yield performance and quality of com plant. The treatments used in this study were non-fertilizer, NPK standard in chemical fertilizer(N:$P_2O_5$ : $K_2O$= 200 : 150 : 150 kg/ha), cattle manure 20.40, 60 and 80 ton/ha Application of cattle manure improved soil pH, organic matter, available phosphate and exchangeable cations in the soils. During the experiment, soil pH was improved from 4.7 in the chemical fertilizer application(control) to 5.4-5.6 in the application of cattle manure, and available $P_2O_5$ wntent was increased from 72.2 ppm(contro1) to 340.2 ppm(cattle manure 80 ton/ha). Application of cattle manure increased plant growth, plant height and stalk diameter, and silage yields. Dry matter yields were produced 15.88 ton(chemical fertilizer), 20.11 ton(cattle manure 40 ton) and 21.22 ton/ha(cattle manure 80 ton/ha). However, no signicant yield differences were observed between cattle manure 40, 60 and 80 tonlha Productions of total digestible nutrients(TDN) and net energy for lactation(NEL) were also increased under cattle manure application. From the abobe results, the proper application amount of cattle manure was 40 tonha in this experiment.

  • PDF

Development of Guidelines for Animal Waste Land Application to Minimize Water Quality Impacts (축산분뇨 농지환원을 위한 적정관리방안)

  • 홍성구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.136-146
    • /
    • 2002
  • Land application of manure compost is considered one of the widely-used animal waste management practices. Many livestock farms adopt composting for their animal waste disposal and apply the compost to crop fields. While standard rates have been established based on researches with respect to land application of manure compost recently, there have been few discussions on water quality impact of the application. Water quality impact should be taken into account in land applications of manure compost. In this study, management practices were proposed based on the investigation of water quality of leachate from manure compost under rainfall simulation, field studies, and monitoring runoff water quality from farm fields after land application of animal waste. The concentrations of major water quality parameters of the leachate were significantly high, whereas those of runoff from soils after tillage for soil incorporation, were not affected by the application based on a series of experiments. Runoff water from farm fields after land application also showed high concentrations of pollutants. Appropriate management practices should be employed to minimize pollutant loading from manure applied fields. Proposed major management practices include 1) application of recommended amounts, 2) proper tillage for complete soil and manure incorporation, 3) field management to prevent excessive soil erosion, 4) complete diversion of inflow into the field from outside, 5) implementation of vegetative buffer strips near boundaries, and 6) prevention of direct discharge of runoff water front fields Into streams.

Effect of Organic Fertilizer Application on the Chemical Properties of the Orchard Soils and Apple Yield (사과원에서 유기질비료시용이 토양화학성 및 사과 수량에 미치는 영향)

  • Choi, Jyung;Lee, Dong-Hoon;Choi, Choong-Lyeal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.393-397
    • /
    • 2000
  • This study was conducted to find out the effect of long-term compost application on the chemical properties of the orchard soils and apple quality. The contents of P and cations in soils were increased by the application of compost, while there are no difference in that of organic matter. The increase in application rates of compost resulted to the increase in apple yields, however, firmness and Brix of apple were as not differentiated by the compost application. The application of lower chemical fertilizer and higher compost resulted to the increase in the contents of organic matter and Ca in soils. The compost application resulted to the increase in inorganic material contents in soil but was not effective on the quality of apple fruits.

  • PDF

Effect of Water Treatment Sludge Application on the Growth of Altari Radish(Raphanus sativus L.) (알타리무우 생육(生育)에 대한 정수(淨水) 슬러지의 시용효과(施用効果))

  • Chang, Ki-Woon;Kim, Sangdeog A.;Kim, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.2
    • /
    • pp.78-84
    • /
    • 1993
  • In order to know the effect of sludge from water treatment plants un agricultural environment, an experiment of water treatment sludge application for Altari radish (Raphanus sativus L.) was carried out. And the results were as follows ; 1. The pH of water treatment sludge was 7.2, which was higher than that of the experimental soil. The exchangeable Ca content in the sludge was very high being 29me/100g sludge. So when the sludge was applied to the soil, amending effect for soil acidity was supposed. 2. With the application of the water treatment sludge to the soil, soil pH and organic matter content were increased. With the increase of the level of sludge application, contents of crude fiber and Ca in Altari radish were increased, white those of P and Mg tended to decrease. 3. The length of the root and the amount of fresh yield of the whole plant of radish tended to increase with the increase of sludge application, and this tendency was more evident on the infertile soil. From the above results, it was concluded that the fresh yield of Altari radish increased up to 75ton/ha sludge application on the fertile soil, but the yield decreased when higher levels of sludge was applied. While on the infertile soil, the yield increased up to the application of 300ton/ha, and the heavier application level did not adversely affect the yield of Altari radish.

  • PDF

Fractional Recovery as Extractable Form of Nutrient in Composted Livestock Manure Application on Soil Distributed in jeju (제주 토양에서 시용한 가축분 중 양분의 유효화율)

  • Hwang, Ki-Sung;Lee, In-Bog;Park, Jin-Myean;Yoo, Bong-Sick
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.1
    • /
    • pp.49-54
    • /
    • 2007
  • This study was conducted to determine effects of composted livestock manure application on soil nutrient change. PVC pot $(30\times100cm)$ was filled with either volcanic ash soil (Gujwa series) or non-volcanic ash soil (Aewol series) and the 20 cm surface soils were applied with composted livestock manures of cattle pig and poultry at the rates of 0, 50, 100 and 150 ton/ha, respectively. After 210 days soils samples of phosphate, potassium, calcium, and magnesium affected by application of the compost. The applied composted were equivalent to the application of organic matter of $23\sim111$ ton/ha and nitrogen of $80\sim450$ ton/ha. Availability rate of phosphate after the application of composted livestock manures ranged from 1.6 to 91.7% according to the different composted. It was much higher in the non-volcanic ash soil than in the volcanic ash soil. Availability rate of potassium fractional recovery rate change ranged from 22 to 94% according to the different manures. It was larger in the composted Availability rate of calcium 38 to 93% and $9\sim90%$ in volcanic ash soil and non-volcanic ash soil, respectively, It was higher in the composted manures followed by cattle and composted pig manures. Availability rate magnesium ranged from 12 to 41% and $1\sim9%$ in volcanic ash soil and non-volcanic ash soil, respectively. The rate was higher in the composted poultry manure followed by pig and composted cattle manures.

Acidification and Changes of Mineral Nutrient Availability in Soils Amended with Elemental Sulfur

  • Kim, Byoung-Ho;Chung, Jong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.22-28
    • /
    • 2011
  • With the increasing cultivation of acid-loving plants such as blueberries, the artificial acidification of soils is frequently required. This research was conducted to determine the application rates of elemental sulfur (S) required in the soil acidification for blueberry cultivation. Laboratory incubation experiment was conducted to acidify three arable soils (pH 6-7) of different texture to pH 4.5-5.0 by the addition of varying amounts of elemental S. All rates of elemental S addition reduced soil pH, although the efficacy of acidification was related to the application rate and soil characteristics. pH reduction was slow in sandy loam soil, and the final equilibrium pH was obtained after 60, 43, and 30 days of incubation in sandy loam, loam, and silty clay, respectively. Although the final pHs obtained after 93 days of incubation were not significantly different among the three soils, the equilibrium pH was relatively higher in soil of higher clay content in the application rates of 1.5-2.0 g S $kg^{-1}$ soil. The estimated amounts of elemental S required in lowering pH to 4.5-5.0 were 0.59-1.01, 0.67-1.03, and 0.53-0.88 g S $kg^{-1}$ for sandy loam, loam, and silty clay, respectively. The lowest estimated amount of elemental S in the acidification of silty clay soil was attributable to the low organic matter content. For clay soils containing optimum level of organic matter, the application rates of elemental S should be much higher than those values estimated in this research. Soil acidification did not significantly increase the available concentrations of Ca, Mg and K. Extractable Cu and Zn was not greatly affected by the acidification, but extractable Fe, Mn, and Al in the acidified soils were higher than those found in non-acidified soils. Such increases in solubility are attributable to the dissolution of oxides and hydroxides of the elements.

Effect of Neutralization of Red Mud on Arsenic Stabilization in Soils (레드머드 중화 방법에 따른 토양 중 비소의 안정화 특성 평가)

  • Woo, Jio;Kim, Eun Jung
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.65-73
    • /
    • 2021
  • Since the amount of red mud, generated from aluminum smelting process as a by-product, has increased worldwide, the recycle and metal resource recovery from the red mud is becoming more important. In this study, in order to recycle the red mud as a soil stabilizer to remediate arsenic contaminated soils, neutralization of red mud was investigated. Red mud was neutralized by washing with distilled water and NaCl, CaCl2, FeCl3, and HCl solutions and heating at 200-800℃, and arsenic stabilization characteristics in soils were evaluated with the neutralized red mud. Although washing with distilled water was not effective in neutralizing red mud, the application of the washed red mud to soils lowered the soil pH compared to the application of untreated red mud. Among NaCl, CaCl2, FeCl3, and HCl solutions, washing with FeCl3 showed the most effective in lowering pH of the red mud from pH 10.73 to pH 4.26. Application of the neutralized red mud in soils resulted in quite different arsenic stabilization efficiency depending on soil samples. In M1 soil, which showed relatively high arsenic stabilization efficiency by untreated red mud, the neutralization of red mud resulted in little effect on arsenic stabilization in soil. On the other hand, in M2 soil, which showed low arsenic stabilization efficiency by untreated red mud, the neutralization of red mud increased arsenic stabilization significantly. Soil characteristics such as clay minerals and pH buffering capacity seemed to affect reactions between red mud and soils, which resulted in different effects of the red mud application on soil pH and arsenic stabilization efficiencies.

Effects of Compost Application and Plastic Mulching on Soil Carbon Sequestration in Upland Soil (밭토양에서 퇴비시용과 비닐멀칭이 토양탄소 축적에 미치는 영향)

  • Kang, Jum-Soon;Suh, Jeong-Min;Shin, Hyun-Moo;Cho, Jae-Hwan;Hong, Chang-Oh
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.260-267
    • /
    • 2013
  • BACKGROUND: In most studies, soil carbon sequestration has been evaluated simply with change of soil organic carbon content. So far, information regarding stability of soil organic carbon is limited. METHODS AND RESULTS: This study was conducted to determine changes in soil organic carbon (SOC) content and stability of carbon in response to compost application rates and plastic mulching treatment during the hot pepper growing season. Under the pot experiment condition, compost was mixed with an arable soil at rates corresponding to 0, 10, 20, and 40 Mg/ha. To determine effects of plastic mulching on soil carbon sequestration, plastic mulching and no mulching treatments were set up in soils amended with the application rate of 20 Mg/ha. The SOC content did not significantly increase with application of compost and plastic mulching at harvest time. No significant changes in bulk density with compost application and plastic mulching was found. These might result from short duration of experiment. While hot water extractable organic carbon content significantly decreased with compost application and plastic mulching, humic substances increased. Belowground biomass of hot pepper was biggest at the recommended application rate (20 Mg/ha) of compost. CONCLUSION: From the above results, continuous application of compost at the recommended application rate could improve increase in SOC content and stability of carbon in long term aspect.

Evaluation of Streptomyces saraciticas as Soil Amendments for Controlling Soil-Borne Plant Pathogens

  • Wu, Pei-Hsuan;Tsay, Tung-Tsuan;Chen, Peichen
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.596-606
    • /
    • 2021
  • Soil-borne diseases are the major problems in mono cropping. A mixture (designated LTM-m) composed of agricultural wastes and a beneficial microorganism Streptomyces saraceticus SS31 was used as soil amendments to evaluate its efficacy for managing Rhizoctonia solani and root knot nematode (Meloidogyne incognita). In vitro antagonistic assays revealed that SS31 spore suspensions and culture broths effectively suppressed the growth of R. solani, reduced nematode egg hatching, and increased juvenile mortality. Assays using two Petri dishes revealed that LTM-m produced volatile compounds to inhibit the growth of R. solani and cause mortality to the root knot nematode eggs and juveniles. Pot and greenhouse tests showed that application of 0.08% LTM-m could achieve a great reduction of both diseases and significantly increase plant fresh weight. Greenhouse trials revealed that application of LTM-m could change soil properties, including soil pH value, electric conductivity, and soil organic matter. Our results indicate that application of LTM-m bio-organic amendments could effectively manage soil-borne pathogens.