• Title/Summary/Keyword: soil and rock information system

Search Result 35, Processing Time 0.027 seconds

Estimation of Earth Pressures Acting on Box Structures Buried in Ground (지중에 매설된 박스구조물에 작용하는 토압 산정)

  • Hong, Won-Pyo;Yun, Jung-Mann;Song, Young-Suk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.2
    • /
    • pp.23-33
    • /
    • 2015
  • The earth pressure acting on underground structure was measured by application of the instrumentation system in the subway construction site constructed by the method of cut-and-cover tunnel. The measured earth pressure was compared with the earth pressure obtained from the existed theoretical equation, and the actual earth pressure diagram acting on the underground structure was investigated. As a result of investigation, the vertical earth pressure is mainly affected by the embankment height, and the lateral earth pressure is significantly affected by whether the existence of earth retaining structures or not. The measured vertical earth pressure is very similar to the theoretical earth pressure proposed by Bierbaumer. The measured lateral earth pressure is closed to the active earth pressure proposed by Rankine rather than the earth pressure at rest. The coefficient of earth pressure in soil deposit layer is about 0.35, and the coefficient in soft rock deposit layer is about 0.21. For design and construction the underground structures, therefore, it is reasonable estimation that the lateral earth pressure acting on structures installed in soil deposit layers is an average value between active earth pressure and earth pressure at rest. In rock deposit layers, the lateral earth pressure acting on structure is an active earth pressure only.

Groundwater Quality in Gyeongnam Region Using Groundwater Quality Monitoring Data: Characteristics According to Depth and Geological Features by Background Water Quality Exclusive Monitoring Network (지하수수질측정망 자료를 활용한 경남지역 지하수 수질: 배경수질전용측정망에 의한 심도·지질별 특성)

  • Cha, Suyeon;Seo, Yang Gon
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.39-54
    • /
    • 2020
  • This study analyzed the groundwater quality according to the depth and geological features in Gyeongsangnam-do area using groundwater quality monitoring network data to grasp the groundwater quality characteristics and to provide basic data for policy making on efficient groundwater management. Five hundred and three data sets were acquired from background water quality exclusive monitoring network in soil groundwater information system for five years (2013 ~ 2017). Except for the total coliforms and tracer items such as mercury, phenol, and others, the parameters of water quality were significant or very significant, depending on depth and geological features. As the depth got deeper, the average value of pH and electrical conductivity increased; water temperature, dissolved oxygen, oxide reduction potential, arsenic, total coliforms, and turbidity decreased; and total unfit rate for drinking water standards was lower. It was found that the sum of the positive and negative ions was the highest in the clastic sedimentary rock and the lowest in metamorphic rock. The total unfit rate for drinking water standards was the highest for metamorphic rocks, followed by clastic sedimentary rock and unconsolidated sediments and, finally, intrusive igneous rock with the lowest penetration. The Na-Cl water type, which indicated the possibility of contamination by external pollutants, appeared only at some points in shallow depths and in clastic sedimentary rocks.

A STUDY ON THE SAFETY ANALYSIS OF ROCK FILL DAM (1) (필댐의 안정성 해석 연구 (1))

  • HoWoongShon;DaeKeunLee
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.3
    • /
    • pp.165-177
    • /
    • 2003
  • The purpose of this paper is to analyze the behavior and to study the safety evaluation of the Unmun Dam located in Cheongdo-Gun of GyeongBuk Province, Korea. For this purpose, soil analyses including boring data, geophysical surveys were conducted. In this paper, especially many geophysical methods were adopted to configure out the subsurface situation of dam. Applied geophysical methods were: 1) electric resistivity survey, 2) high frequency magnetotelluric (HFMT) survey, 3) ground penetrating radar (GPR) survey, 4) seismic refraction survey, 5) seismic cross-hole tomography survey, and 6) high frequency impedance (ZHF) survey. Each of geophysical surveys were analyzed and joint analyses between geophysical surveys were also performed to deduce the more reliable subsurface information of Dam by using the features and characteristics of each geophysical survey. Since many defects, such as gravel and weathered rock blocks in the dam core, and lots of amounts of leakage, by boring analyses were found, reinforcement by compaction grouting system (CGS) has been conducted in some range of dam. Some geophysical data and data of geotechnical gauges were also used to confirm the effects of reinforcement. Electric resistivity, EM, GPR, ZHF, seismic refraction and seismic tomography surveys show that left side of dam is weak, which means the possibility of existence of gravel, rock block, water and cavities in the core of dam. This result coincides with the boring data. Especially, electric survey after reinforcement shows that even the right side of the dam has been deformed by the strong pressure during the reinforcement itself. As a conclusion, some problems in the dam found. Especially, the dam near spillway shows the high possibility of leakage. It should be pointed out that only the left side of he dam has not a leakage problem. As a whole, the dam has problems of weakness, because of unsatisfactory construction. It is strongly recommended that highly intensive monitoring is required.

  • PDF

Difficulties in P and S wave velocity logging (속도검층에서 난제들)

  • Jo, Churl-Hyun;Byun, Joong-Moo;Hwang, Se-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.43-54
    • /
    • 2005
  • Care should be taken when performing the P and S wave velocity loggings. Some of them are the effect of casing that is installed to prevent the borehole collapsing when the drilling is done on the loose ground such as soil and/or soft rock, and the discrepancy of the velocities of the same media according to the difference of the source wave frequency spectrum. To overcome these difficulties, the following suggestions are recommended; (1) try a careful drilling technique that can eliminate the necessity of the casing, and (2) apply the logging methods with the proper frequency spectrum that is appropriate to the object of the velocity logging.

  • PDF

A strategy to enhance the efficiency of land seismic reflection method via controlling seismic energy radiation pattern. (지면 탄성파 반사법의 효율성 향상을 위한 탄성파 발생원 에너지 방사형 변조기법)

  • Kim, Jung-Yul;Kim, Yoo-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.807-814
    • /
    • 2004
  • Land seismic reflection survey has been increasingly demanded in various civil engineering works because of its own ability to delineate layers, water table, to detect cavities or fracture zones, to estimate seismic velocities of each layer. However, our shallow subsurface structures are very complex. The relatively thin layer(mostly soil) to the wavelength directly followed by a basic rock with high impedance used to generate complicated surface waves, kind of channel waves with high amplitude that is dominate in entire seismograms and hence the useful reflection events will be almost hopelessly immersed in the undesired surface waves. Thus, it would seem that the use of traditional seismic survey could not be likely to provide in itself a satisfactory information about our exploration targets. This paper hence introduces an efficient measuring strategy illustrating a properly controlled arrangement of the vertical single force sources commonly used, yielding a very sharply elongated form of P-energy with a minimum of S radiation energy, what we call, P-beam source. Abundant experiments of physical modeling showed that in that way the surface waves could be enormously reduced and the reflection events would be additive and thus reinforced. Examples of field data are also illustrated. The contribution of P-beam source will be great in civil engineering area as well as in general geological exploration area.

  • PDF

Measuring Interfacial Tension between Brine and Carbon Dioxide in Geological CO2 Sequestration Conditions using Pendant Bubble Methods (수적(垂滴)법을 이용한 이산화탄소 지중저장 조건에서의 염수-이산화탄소 간 계면장력 측정)

  • Park, Gyuryeong;An, Hyejin;Kim, Seon-ok;Wang, Sookyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.46-55
    • /
    • 2016
  • This experimental study was aimed to estimate interfacial tension of brine-$CO_2$ by using a pendant bubble method and image analysis. Measurements were performed for wide ranges of temperatures, pressures, and salinities covering reservoir conditions in Pohang basin, a possible candidate for $CO_2$ storage operation in Korea. The profiles of $CO_2$ bubbles in brine obtained from image analysis with the densities of brine and $CO_2$ from previous studies were applied to Laplace-Young equation for calculating interfacial twnsion in brine-$CO_2$ system. The experimental results reveals that the interfacial tension is significantly affected by reservoir conditions such as pressure, temperature and water salinity. For conditions of constant temperature and water salinity, the interfacial tension decreases as pressure increases for low pressures (P < $P_c$), and approaches to a constant value for high pressures. For conditions of constant pressure and water salinity, the interfacial tension increases as temperature increases for T < $T_c$, with an asymptotic trend towards a constant value for high temperatures. For conditions of constant pressure and temperature, the interfacial tension increases with increasing water salinity. The trends in changes of interfacial tension can be explained by the effects of the reservoir conditions on the density difference of brine and $CO_2$, and the solubility of $CO_2$ in brine. The information on interfacial tensions obtained from this research can be applied in predicting the migration and distribution of injecting and residual fluids in brine-$CO_2$-rock systems in deep geological environments during geological $CO_2$ sequestrations.

Characteristics of the Cut Slopes located in Mt. Jang Area, Busan (부산 장산지역에 분포한 절개사면의 특성)

  • Song, Young-Suk;Kim, Kyeong-Su;Cho, Yong-Chan;Lee, Choon-Oh;Chae, Byung-Gon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.65-73
    • /
    • 2013
  • The information of cut slope in Mt. Jang area, Busan is investigated in order to construct the Slope Management System in Urban Area. The slope inspection sheet is made to record the characteristics for cut slopes, and that is capable to be inputted slope information systematically. The cut slopes in Mt. Jang area are consisting of 69 slopes. Most of the cut slopes are constructed in cutting slope and retaining wall (CR). The cut slopes located in housing facilities are 46 slopes, and the slopes located in school facilities are 12 slopes. The traverse of cut slopes is mainly ranged from 50 m to 150 m, and the height is mainly ranged from 10 m to 20 m. The slopes combined with soil and rock are mostly distributed. The retaining wall was installed in the toe part of cut slope in order to increase the slope stability, and the additional reinforcement methods including the anchor, drainage, preventing rock fall, shotcrete and vegetation were installed at the toe part of cut slopes.

GIS-based Spatial Zonations for Regional Estimation of Site-specific Seismic Response in Seoul Metropolis (대도시 서울에서의 부지고유 지진 응답의 지역적 예측을 위한 GIS 기반의 공간 구역화)

  • Sun, Chang-Guk;Chun, Sung-Ho;Chung, Choong-Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1C
    • /
    • pp.65-76
    • /
    • 2010
  • Recent earthquake events revealed that severe seismic damages were concentrated mostly at sites composed of soil sediments rather than firm rock. This indicates that the site effects inducing the amplification of earthquake ground motion are associated mainly with the spatial distribution and dynamic properties of the soils overlying bedrock. In this study, an integrated GIS-based information system for geotechnical data was constructed to establish a regional counterplan against ground motions at a representative metropolitan area, Seoul, in Korea. To implement the GIS-based geotechnical information system for the Seoul area, existing geotechnical investigation data were collected in and around the study area and additionally a walkover site survey was carried out to acquire surface geo-knowledge data. For practical application of the geotechnical information system used to estimate the site effects at the area of interest, seismic zoning maps of geotechnical earthquake engineering parameters, such as the depth to bedrock and the site period, were created and presented as regional synthetic strategy for earthquake-induced hazards prediction. In addition, seismic zonation of site classification was also performed to determine the site amplification coefficients for seismic design at any site and administrative sub-unit in the Seoul area. Based on the case study on seismic zonations for Seoul, it was verified that the GIS-based geotechnical information system was very useful for the regional prediction of seismic hazards and also the decision support for seismic hazard mitigation particularly at the metropolitan area.

Considerations on the Difficulties in Velocity Logging in the Near Surface Environments (천부 지반 환경에서 속도검층 난제들에 대한 고찰)

  • Jo, Churl-Hyun;Byun, Joong-Moo;Hwang, Se-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.3
    • /
    • pp.185-192
    • /
    • 2006
  • Cares should be taken when performing the P and S wave velocity loggings in engineering and environmental fields. Some of them are the effect of casing, which is installed to prevent the borehole collapsing when the drilling is done on the loose ground such as soil and/or soft rock, and the discrepancy of the velocities of the same media according to the difference of the source wave frequency spectrum. The elastic moduli obtained from the P and S wave velocity logging have the dynamic characteristics. To overcome these difficulties, the following suggestions are recommended; (1) develop and apply a careful drilling technique that can keep the borehole wall without a casing, and (2) apply the logging methods with the suitable frequency bandwidth for the object of the velocity logging. It is important to make the aseismological engineers understand the difference between the dynamic elastic moduli and the static ones obtained from mechanical test, and to advise them to use the information properly.

Detecting and Extracting Changed Objects in Ground Information (지반정보 변화객체 탐지·추출 시스템 개발)

  • Kim, Kwangsoo;Kim, Bong Wan;Jang, In Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.515-523
    • /
    • 2021
  • An integrated underground spatial map consists of underground facilities, underground structures, and ground information, and is periodically updated. In this paper, we design and implement a system for detecting and extracting only changed ground objects to shorten the map update speed. To find the changed objects, all the objects are compared, which are included in the newly input map and the reference map in the integrated map. Since the entire process of comparing objects and generating results is classified by function, the implemented system is composed of several modules such as object comparer, changed object detector, history data manager, changed object extractor, changed type classifier, and changed object saver. We use two metrics: detection rate and extraction rate, to evaluate the performance of the system. As a result of applying the system to boreholes, ground wells, soil layers, and rock floors in Pyeongtaek, 100% of inserted, deleted, and updated objects in each layer are detected. In addition, it provides the advantage of ensuring the up-to-dateness of the reference map by downloading it whenever maps are compared. In the future, additional research is needed to confirm the stability and effectiveness of the developed system using various data to apply it to the field.