• Title/Summary/Keyword: soil amplification

Search Result 163, Processing Time 0.022 seconds

Dynamic interaction effects of buried structures on seismic response of surface structures

  • Sisman, Rafet;Ayvaz, Yusuf
    • Earthquakes and Structures
    • /
    • v.19 no.1
    • /
    • pp.1-16
    • /
    • 2020
  • This study presents an investigation of the dynamic interactions between a surface structure lying on two different soil deposits and a square-shaped buried structure embedded in the soil. To this end, a large number of numerical models are generated by using a well-known Finite Element Method software, i.e., OpenSEES. The interaction phenomenon is assumed to be affected by six different parameters. In the parametric study, these parameters are assumed to have various values in accordance with the engineering practices. A total of 1620 possible combinations of the parameter values are addressed in this study. 30 different numerical models are also generated as the 'free-field cases' to set a reference. The surface structure drift and acceleration amplifications are used as a measure to evaluate the dynamic interactions. The response (i.e., drifts and accelerations) amplifications are calculated as the ratio of the maximum surface structure response in any 'case' to the maximum surface structure response in corresponding free-field case. Variation of the response amplifications with any of the investigated parameters is addressed in this paper. The results obtained from the numerical analyses clearly reveal that the presence of a buried structure in the vicinity of a surface structure can cause both amplification and de-amplification of the surface structure responses, depending on the case parameters.

Site specific ground motion simulation and seismic response analysis for microzonation of Kolkata

  • Roy, Narayan;Sahu, R.B.
    • Geomechanics and Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-18
    • /
    • 2012
  • The spatial variation of ground motion in Kolkata Metropolitan District (KMD) has been estimated by generating synthetic ground motion considering the point source model coupled with site response analysis. The most vulnerable source was identified from regional seismotectonic map for an area of about 350 km radius around Kolkata. The rock level acceleration time histories at 121 borehole locations in Kolkata for the vulnerable source, Eocene Hinge Zone, due to maximum credible earthquake (MCE) moment magnitude 6.2 were generated by synthetic ground motion model. Soil investigation data of 121 boreholes were collected from the report of Soil Data Bank Project, Jadavpur University, Kolkata. Surface level ground motion parameters were determined using SHAKE2000 software. The results are presented in the form of peak ground acceleration (PGA) at rock level and ground surface, amplification factor, and the response spectra at the ground surface for frequency 1.5 Hz, 3 Hz, 5 Hz and 10 Hz and 5% damping ratio. Site response study shows higher PGA in comparison with rock level acceleration. Maximum amplification in some portion in KMD area is found to be as high as 3.0 times compared to rock level.

Evaluating the effective spectral seismic amplification factor on a probabilistic basis

  • Makarios, Triantafyllos K.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.1
    • /
    • pp.121-129
    • /
    • 2012
  • All contemporary seismic Codes have adopted smooth design acceleration response spectra, which have derived by statistical analysis of many elastic response spectra of natural accelerograms. The above smooth design spectra are characterized by two main branches, an horizontal branch that is 2.5 times higher than the peak ground acceleration, and a declining parabolic branch. According to Eurocode EN/1998, the period range of the horizontal, flat branch is extended from 0.1 s, for rock soils, up to 0.8 s for softer ones. However, from many natural recorded accelerograms of important earthquakes, the real spectral amplification factor appears to be much higher than 2.5 and this means that the spectrum leads to an unsafe seismic design of the structures. This point is an issue open to question and it is the object of the present study. In the present paper, the spectral amplification factor of the smooth design acceleration spectra is re-calculated on the grounds of a known "reliability index" for a desired probability of exceedance. As a pilot scheme, the seismic area of Greece is chosen, as it is the most seismically hazardous area in Europe. The accelerograms of the 82 most important earthquakes, which have occurred in Greece during the last 38 years, are used. The soil categories are taken into account according to EN/1998. The results that have been concluded from these data are compared with the results obtained from other strong earthquakes reported in the World literature.

Effects of Experimental Drought on Soil Bacterial Community in a Larix Kaempferi Stand

  • Kim, Beomjeong;Choi, Byoungkoo
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.3
    • /
    • pp.258-261
    • /
    • 2018
  • Drought alters soil microorganisms; however, it is still not clear how soil microbes respond to severe drought conditions. In this study, the responses of soil bacterial community to experimental drought in a coniferous stand were examined. Six $6m{\times}6m$ plots with three replicates of control and drought treatments were delimited. PCR amplification and Illumina sequencing were conducted for cluster analysis of soil bacterial community and species richness and species diversity was analyzed. Along the 393 days of simulated drought from July 2016 to October 2017, soil bacterial species diversity slightly increased whereas species richness decreased in both control and roof plots. Moreover, soil bacterial species richness more decreased in roof plots than in controls. Combining these results, soil bacterial activity might have been altered by simulated drought.

Response of anisotropic porous layered media with uncertain soil parameters to shear body-and Love-waves

  • Sadouki, Amina;Harichane, Zamila;Elachachi, Sidi Mohammed;Erken, Ayfer
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.313-322
    • /
    • 2018
  • The present study is dedicated to investigate the SH body-as well as Love-waves propagation effects in porous media with uncertain porosity and permeability. A unified formulation of the governing equations for one-dimensional (1-D) wave propagation in anisotropic porous layered media is presented deterministically. The uncertainties around the above two cited parameters are taken into account by random fields with the help of Monte Carlo Simulations (MCS). Random samples of the porosity and the permeability are generated according to the normal and lognormal distribution functions, respectively, with a mean value and a coefficient of variation for each one of the two parameters. After performing several thousands of samples, the mathematical expectation (mean) of the solution of the wave propagation equations in terms of amplification functions for SH waves and in terms of dispersion equation for Love-waves are obtained. The limits of the Love wave velocity in a porous soil layer overlaying a homogeneous half-space are obtained where it is found that random variations of porosity change the zeros of the wave equation. Also, the increase of uncertainties in the porosity (high coefficient of variation) decreases the mean amplification function amplitudes and shifts the fundamental frequencies. However, no effects are observed on both Love wave dispersion and amplification function for random variations of permeability. Lastly, the present approach is applied to a case study in the Adapazari town basin so that to estimate ground motion accelerations lacked in the fast-growing during the main shock of the damaging 1999 Kocaeli earthquake.

SIMULATION OF SOIL MOISTURE VARIABILITY DUE TO CLIMATE ORANGE IN NORTHEAST POND RIVER WATERSHED, NEWFOUNDLAND, CANADA

  • A. Ghosh Bobba;Vijay P. Singh
    • Water Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.31-43
    • /
    • 2003
  • The impacts of climate change on soil moisture in sub - Arctic watershed simulated by using the hydrologic model. A range of arbitrary changes in temperature and precipitation are applied to the runoff model to study the sensitivity of soil moisture due to potential changes in precipitation and temperature. The sensitivity analysis indicates that changes in precipitation are always amplified in soil moisture with the amplification factor for flow. The change in precipitation has effect on the soil moisture in the catchment. The percentage change in soil moisture levels can be greater than the percentage change in precipitation. Compared to precipitation, temperature increases or decreases alone have impacts on the soil moisture. These results show the potential for climate change to bring about soil moisture that may require a significant planning response. They are also indicative of the fact that hydrological impacts affecting water supply may be important in consider-ing the cost and benefits of potential climate change.

  • PDF

Dynamic Amplification Characteristics of Major Domestic Seismic Observation Sites using Ground Motions from Domestic Macro Earthquakes (국내 중규모지진의 자료를 이용한 주요 관측소 지반의 동적 증폭특성에 관한 연구)

  • Kim, Jun Kyoung
    • The Journal of Engineering Geology
    • /
    • v.22 no.4
    • /
    • pp.399-408
    • /
    • 2012
  • To estimate seismic source and soil-structure interaction more reliably, site amplification characteristics should be considered. Among the various estimation methods, we used Nakamura's method (1989) to estimate site amplification. This method was originally applied to background noise; however, it has recently been successfully applied to S-wave and Coda-wave energy, and is applied to S-waves in the present study. We used more than 180 observed ground motions from 23 macro-earthquakes and then analyzed site amplification characteristics at eight seismic stations. Each station showed characteristics of site amplification properties in the low-, high- and resonance-frequency ranges. Comparison of the present results with those of other studies provide successful information regarding the dynamic amplification of domestic site characteristics and site classification.

Use of Terminal Restriction Length Polymorphism (T-RFLP) Analysis to Evaluate Uncultivable Microbial Community Structure of Soil

  • Chauhan, Puneet Singh;Shagol, Charlotte C.;Yim, Woo-Jong;Tipayno, Sherlyn C.;Kim, Chang-Gi;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.127-145
    • /
    • 2011
  • Various environmental ecosystems are valuable sources for microbial ecology studies, and their analyses using recently developed molecular ecological approaches have drawn significant attention within the scientific community. Changes in the microbial community structures due to various anthropogenic activities can be evaluated by various culture-independent methods e.g. ARISA, DGGE, SSCP, T-RFLP, clone library, pyrosequencing, etc. Direct amplification of total community DNA and amplification of most conserved region (16S rRNA) are common initial steps, followed by either fingerprinting or sequencing analysis. Fingerprinting methods are relatively quicker than sequencing analysis in evaluating the changes in the microbial community. Being an efficient, sensitive and time- and cost effective method, T-RFLP is regularly used by many researchers to access the microbial diversity. Among various fingerprinting methods T-RFLP became an important tool in studying the microbial community structure because of its sensitivity and reproducibility. In this present review, we will discuss the important developments in T-RFLP methodology to distinguish the total microbial diversity and community composition in the various ecosystems.

Seismic Motion Amplification Characteristics at Reclaimed Ground (매립 지반에서의 지진파 증폭 특성)

  • Kim Yong-seong;Kim Ki-Young;Jeon Je-Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.5
    • /
    • pp.51-61
    • /
    • 2005
  • In this study, borehole records were analyzed to verify the amplification of seismic motion at the soft reclaimed ground before and after the main event of the 1995 Hyogoken Nambu Earthquake at Port Island, Japan. From the analysis, it was shown that the amplification of seismic motion occurred near the soft ground surface (within 30 m below) where confining stress is low. Moreover, it was found that recovery of dynamic soil stiffness at the liquefied ground began gradually 3 hours after the liquefaction and completed in 10 days, when the ground exhibited the same seismic motion characteristics as those before the liquefaction.

Seismic microzonation of Kolkata

  • Shiuly, Amit;Sahu, R.B.;Mandal, Saroj
    • Geomechanics and Engineering
    • /
    • v.9 no.2
    • /
    • pp.125-144
    • /
    • 2015
  • This paper presents the probabilistic seismic microzonation of densely populated Kolkata city, situated on the world's largest delta island with very soft alluvial soil deposit. At first probabilistic seismic hazard analysis of Kolkata city was carried out at bedrock level and then ground motion amplification due to sedimentary deposit was computed using one dimensional (1D) wave propagation analysis SHAKE2000. Different maps like fundamental frequency, amplification at fundamental frequency, peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), maximum response spectral acceleration at different time period bands are developed for variety of end users, structural and geotechnical engineers, land use planners, emergency managers and awareness of general public. The probabilistically predicted PGA at bedrock level is 0.12 g for 50% exceedance in 50 years and maximum PGA at surface level it varies from 0.095 g to 0.18 g for same probability of exceedance. The scenario of simulated ground motion revealed that Kolkata city is very much prone to damage during earthquake.