• Title/Summary/Keyword: soil additives

Search Result 125, Processing Time 0.022 seconds

Cesium Removal from Soil Contaminated with Radioactivity Using Electrokinetic Method (동전기적방법을 이용한 방사능오염토양 내의 세슘 제거)

  • 김계남;원휘준;김민길;박진호;오원진
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.696-700
    • /
    • 2003
  • $H_2SO_4$ and citric acid had higher extraction efficiency of $^{137}Cs$ from soil than the other chemicals. Thus, $H_2SO_4$and citric acid were used as additives on remediation experiment by electrokinetic method to increase removal efficiency of $^{137}Cs$ from the radioactive soil being stored during a long time. An average velocity of effluent discharged from experimental column $2.0{\times}10^{-2}$/cm/min and a volume of the discharged soil wastewater for 10 days is 3.6 Pore Volume. The 54% of a total of $^{137}Cs$ in the column was decontaminated for 10 days. Furthermore, the predicted values of residual concentration by the developed model were quite similar to those obtained from experiments.

  • PDF

Study of geotechnical properties of a gypsiferous soil treated with lime and silica fume

  • Moayyeri, Neda;Oulapour, Masoud;Haghighi, Ali
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.195-206
    • /
    • 2019
  • The gypsiferous soils are significantly sensitive to moisture and the water has a severe destructive effect on them. Therefore, the effect of lime and silica fume addition on their mechanical properties, when subjected to water, is investigated. Gypsiferous soil specimens were mixed with 1, 2 and 3% lime and 1, 3, 5 and 7% silica fume, in terms of the dry weight of soil. The specimens were mixed at optimum moisture content and cured for 24 hours, 7 and 28 days. 86 specimens in the sizes of unconfined compression strength test mold were prepared to perform unconfined compressive strength and durability tests. The results proved that adding even 1% of each of these additives can lead to a 15 times increase in unconfined compressive strength, compared with untreated specimen, and this increases as the curing time is prolonged. Also, after soaking, the compressive strength of the specimens stabilized with 2 and 3% lime plus different percentages of silica fume was considerably higher than before soaking. The durability of the treated specimens increased significantly after soaking. Direct shear tests showed that lime treatment is more efficient than silica fume treatment. Moreover, it is concluded that the initial tangent modulus and the strain at failure increased as the normal stress of the test was increased. Also, the higher lime contents, up to certain limits, increase the shear strength. Therefore, simultaneous use of lime and silica fume is recommended to improve the geotechnical properties of gypsiferous soils.

Strength and Permeability Characteristics of Soil-Bentonite Mixture (Soil-Bentonite 혼합토의 강도 및 투수 특성)

  • Jin, Guangri;Im, Eunsang;Kim, Kiyoung;Sin, Donghoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.4
    • /
    • pp.5-12
    • /
    • 2010
  • Soil mixture using bentonite as a cutoff material is used a lot for various structures such as landfills, banks and dams as cutoff materials. But seepage water is expected to seep since shear failure of filter layer occurs due to external load, embankment load when constructed. Generally, only coefficient of permeability of Soil Mixture is considered irrespective of the changes of intensity on amount of additives. This research is to study on how the changes of amount of bentonite affects permeability and strength of soil mixture. So successive experiments for measuring permeability and strength were conducted as the amount of bentonite changes from 0 to 4%, mixing with the bed material and then making specimens. Around construction site of B dam. As a result, 2.085E-07 cm/sec was shown when the amount of Soil Mixture was 4%. It is proved that unconfined compressive strength and tensile strength increase as the amount of bentonite increases, but saturation shear strength of bentonite soil mixture from the CD experiment is hardly influenced by the amount of bentonite.

Stabilization of oily contaminated clay soils using new materials: Micro and macro structural investigation

  • Ghiyas, Seyed Mohsen Roshan;Bagheripour, Mohammad Hosein
    • Geomechanics and Engineering
    • /
    • v.20 no.3
    • /
    • pp.207-220
    • /
    • 2020
  • Clay soils have a big potential to become contaminated with the oil derivatives because they cover a vast area of the earth. The oil derivatives diffusion in the soil lead to soil contamination and changes the physical and mechanical properties of the soil specially clay soils. Soil stabilization by using new material is very important for geotechnical engineers in order to improve the engineering properties of the soil. The main subjects of this research are a- to investigate the effect of the cement and epoxy resin mixtures on the stabilization and on the mechanical parameters as well as the microstructural properties of clay soils contaminated with gasoline and kerosene, b- study on the phenomenon of clay concrete development. Practical engineering indexes such as Unconfined Compressive Strength (UCS), elastic modulus, toughness, elastic and plastic strains are all obtained during the course of experiments and are used to determine the optimum amount of additives (cement and epoxy resin) to reach a practical stabilization method. Microstructural tests were also conducted on the specimens to study the changes in the nature and texture of the soil. Results obtained indicated that by adding epoxy resin to the contaminated soil specimens, the strength and deformational properties are increased from 100 to 1500 times as that of original soils. Further, the UCS of some stabilized specimens reached 40 MPa which exceeded the strength of normal concrete. It is interesting to note that, in contrast to the normal concrete, the strength and deformational properties of such stabilized specimens (including UCS, toughness and strain at failure) are simultaneously increased which further indicate on suitability and applicability of the current stabilization method. It was also observed that increasing cement additive to the soil has negligible effect on the contaminated soils stabilized by epoxy resin. In addition, the epoxy resin showed a very good and satisfactory workability for the weakest and the most sensitive soils contaminated with oil derivatives.

A Study on Soil Improvement Agent for Rainfall-Induced Erosion on the Soil Slope (흙 사면의 강우 침식보강을 위한 토양개량제 개발에 관한 연구)

  • Kang, Dae-Heung;Kim, Young-Suk;Hwang, In-Taek;Kim, Jae-Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.3
    • /
    • pp.237-246
    • /
    • 2021
  • With climate change, debris flow has been increasing due to the collapse and erosion of shallow slopes caused by extreme rainfall. It is preferred to an economical and eco-friendly method rather than reinforcement of soil slopes with the earth anchor or nailing method. In this study, a soil improvement agent was developed by utilizing insitu soil, leaf mold, and used harbal medicine to help sufficient vegetation. In addition, to prevent surface erosion, shear strength of the soil was increased by using micro cement and hemihydrate gypsum as additives. The optimum mix ratio of the mixture is determined by increasing the shear strength by checking the erosion progress of the ground surface layer due to rainfall through an laboratory test. The safety factor of soil slope has been improved on the slope surface reinforced by the improvement agent, and the strength of erosion has been increased, making it efficient to cope with heavy rain during wet season.

Effects of Hydroxides and Temperature on Soil Washing Technology Enhanced by Nonionic Surfactants (비이온계 계면활성제를 이용한 토양세척기법에서 수산화물의 첨가와 온도의 영향)

  • Ryoo, Doo-Hyun;Jang, Min;Choi, Sang-Il
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.4
    • /
    • pp.171-176
    • /
    • 1998
  • The effect of non-ionic surfactants added by hydroxides was studied to wash HOCs-contaminated soil. The kinds and concentrations of additives-mixed surfactants suitable for the soil washing were found. The effects of temperature on the soil washing were analyzed and the relations of HLB and cloud point were estabilished. As the base strength was increased, the washing efficiency was increased : NaOH>KOH> Mg(OH)$_2$>Al(OH)$_3$. Washing efficiency was not enhanced by Al(OH)$_3$for coagulation effect. When NaOH was added to POE$\_$5/ washing efficiencies by 0.01 M and 0.1 M solutions were increased to 62.5% and 67.3%, respectively. At 1 M of NaOH washing efficiency was decreased to 4.2%. The Optimum concentration ratio of mixed surfactant [POE$\_$5//POE$\_$14/] was 1.8%/1.2% without additives. But optimum concentration ratio of surfactants was changed to 1.2%/1.8% with 0.01 M of NaOH addition. The surface tensions and CMCs of mixed surfactant added by NaOH solutions were investigated. The addition of NaOH reduces the surface tension of more hydrophobic surfactants. The nonionic surfactant of higher HLB showed highed cloud point.

  • PDF

Study on EPB TBM performance by conducting lab-scaled excavation tests with different foam injection for artificial sand (실내 굴진 시험을 통한 폼 주입 조건에 따른 인공 사질토 지반에서 EPB TBM 굴진성능에 대한 고찰)

  • Lee, Hyobum;Shin, Dahan;Kim, Dae-Young;Shin, Young Jin;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.545-560
    • /
    • 2019
  • During EPB TBM tunnelling, an appropriate application of additives such as foam and polymer is an essential factor to secure the stability of TBM as well as tunnelling performance. From the '90s, there have been many studies on the optimal injection of additives worldwidely contrary to the domestic situation. Therefore, in this paper, the foam, which is widely adopted for soil conditioning, was selected as an additive in order to investigate the effect of foam injection on TBM performance through a series of laboratory excavation tests. The excavation experiments were carried out on artificial sandy soil specimens with consideration of the variance of FIR (Foam Injection Ratio), FER (Foam Expansion Ratio) and $C_f$ (Surfactant Concentration), which indicate the amount and quality of the foam. During the tests, torque values were measured, and the workability of conditioned soil was evaluated by comparing the slump values of muck after each experiment. In addition, a weight loss of the replaceable aluminum cutter bits installed on the blade was measured to estimate the degree of abrasion. Finally, the foam injection ratio for the optimal TBM excavation for the typical soil specimen was determined by comparing the measured torque, slump value and abrasion. Note that the foam injection conditions satisfying the appropriate level of machine load, mechanical wear and workability are essential in the EPB TBM operational design.

The Effect of Proteases on Contamination Removal (프로테아제의 오염 세정 효과)

  • Kim, Ju-Hye;Gwon, Mi-Yeon
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2008.04a
    • /
    • pp.181-183
    • /
    • 2008
  • Four different subtilisins of protease were investigated to see their effects on the cleaning activity. The cleaning solution was formulated with various non-ionic surfactants and other additives such as propylene glycol, triethanolamine, pH balancer etc. to evaluate their effect on enzyme activity as well. Evaluation of formulated cleaning solution was carried under K0120 using pre-soiled textiles from EMPA. The results showed that the cleaning activity on soil removal was not severly influenced by surfactant but the enzyme mostly. In addition, the activity of enzymes was not much affected by the type of surfactants as long as the surfactants were non-ionic. Liquinase among the four enzymes used in this study showed the best performance on soil removal, especially blood stain.

  • PDF

Shear strength characteristics of composite reinforced soils (복합보강토의 전단강도 특성)

  • Chang, Pyoung-Wuck;Cha, Kyung-Seob;Park, Young-Kon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.333-336
    • /
    • 2002
  • Traditional methods of earth reinforcement consist of introducing strips, fabrics, or grids into an earth mass. Recently, discrete fibers are simply added and mixed with the soil, much the same as cement, lime or other additives. The advantages of randomly distributed fibers is the maintenance of strength isotropy, low decrease in post-peak shear strength and high stability at failure. In this study, new composite reinforcement structures which consist of geotextile and randomly distributed discrete fibers were examined their engineering properties, such as shear strength of the composite reinforced soil. The increments of shear strength of composite reinforced soils were the sum of increments by fiber and woven geotextile respectively.

  • PDF

파쇄 폐타이어를 이용한 반응벽체에 관한 연구: 폐타이어 내의 MTBE(Methyl tertiary Butyl Ether) 흡착 중심

  • 박상현;이재영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.176-179
    • /
    • 2003
  • Fuel oxygenates, such as Methyl tertiary Butyl Ether (MTBE) is additive in gasoline used to reduce air pollution. Gasoline components and fuel additives can leak form underground storage tanks. MTBE is far more water soluble than gasoline hydrocarbons like BTEX then it travels at essentially the same velocity as groundwater. MTBE in drinking water causes taste and odor problems. Therefore, the purpose of the this study is to examine the ability of ground rubber to sorb MTBE form water. The study consisted of running both batch and column tests to determine the sorption capacity and the flow through utilization efficiency of ground rubber. The result of Column test indicate that ground tire rubber has on the 36% utilization rate. Finally, it is clear that ground rubber present an attractive and relatively inexpensive sorption medium for a MTBE. The Author thought that to determine the economic costs of ground rubber utilization, the cost to sorb a given mass of contaminant by ground rubber will have to be compared to currently accepted sorption media.

  • PDF