• Title/Summary/Keyword: soil acidification

Search Result 136, Processing Time 0.022 seconds

Environmental Impacts on Concentrate Feed Supply Systems for Japanese Domestic Livestock Industry as Evaluated by a Life-cycle Assessment Method

  • Kaku, K.;Ogino, A.;Ikeguchi, A.;Osada, T.;Shimada, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.7
    • /
    • pp.1022-1028
    • /
    • 2005
  • The objectives of this study were to evaluate and compare the environmental load of two different concentrate feed supply systems to the Japanese domestic livestock industry using the Life-cycle Assessment (LCA) method. The current system was defined as that requiring 11.469 million tons of corn imported from the US by sea transport and supplied as concentrate feed to the Japanese domestic livestock industry. The new system proposed by Kaku et al. in 2004 was defined as where 802,830 tons of US imported corn would not be planted in US and would be replaced by barley planted in 278 thousand ha of Japanese domestic land left fallow for the past year. In this case, 909,000 tons of domestic harvest barley would have been supplied as concentrate feed to the Japanese domestic livestock industry in 2000. The activities taken into account within the two system boundaries were three stages: concentrate feed production, feed transportation and gas emission from the soil by chemical fertilizer. Finished compost was regarded as organic fertilizer and was put instead of chemical fertilizers within the system boundary. Adoption of this new concentrate feed supply system by the Japanese domestic livestock industry could reduce 78,462 tons $CO_2$-equivalents of global warming potential, 347 tons $SO_2$-equivalents of acidification potential, 54 tons $PO_4$-equivalents of eutrophication potential and 0.842 million GJ as energy consumption below 2,000 levels. This LCA study comparing two Japanese domestic livestock concentrate feed supply systems showed that the stage of feed transport contributed most to global warming and the stage of emission from the soil contributed most to acidification and eutrophication. The Japanese domestic livestock industry could participate in emissions trading with $CO_2$-equivalents reduced by shifting from some imported US corn as a concentrate feed to domestic barley planted in land left fallow. In that case the Japanese government could launch emissions trading in accordance with Kyoto Protocol in the future.

Assessing Soil Fertility Status of Edible Wild Plants Fields in Ulleung Island

  • Park, Sang-Jo;Park, Jun-Hong;Kim, Byung-Sung;Chung, Yun-Hak;Lee, Dong-Jun;Kwon, Oh-Heun;Park, So-Deuk;Lee, Suk-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.368-374
    • /
    • 2016
  • The perennial edible wild plants such as Aster glehnii, Solidago virgaurea subsp. gigantean, Allium ochotense, Athyrium acutipinnulum, Aruncus dioicus var. kamtschaticus and Codonopsis lanceolata have cultivated as the main income crops introduced into the fields about 30 years ago in Ulleung island. Soil samples were collected from 190 fields and assessed the effects of management practices on soil chemical properties at wild edible plant fields under no-till system. The strong acidic soils of pH 5.4 or less were detected in 45% of the soil samples. The level of soil organic matter was being held at mean $63{\pm}28g\;kg^{-1}$, 2.7 times higher than upland soils in Korea. Available phosphate and exchangeable potassium showed more than recommended levels of upland crops as $680{\pm}489mg\;kg^{-1}$ and $1.94{\pm}1.7cmol_c\;kg^{-1}$, respectively. The fields of Solidago and Aster showing strong soil acidity and high level of available phosphate and water soluble $NO_3{^-}$ were distinguished from other crops in analysis of variance and principal component analysis of soil chemicals. These results suggested that high frequency of acidic soil and high levels of available $P_2O_5$, exchangeable $K_2O$ and water soluble $NO_3{^-}$ were accompanied with the use of urea and NPK-fertilizer based on nitrogen in the field. However, further research is needed to understand the appropriate management of fertilization and the prevention of soil acidification for wild edible plants.

Construction of forest environmental information and evaluation of forest environment (산림환경 정보구축 및 산림환경 평가)

  • Chang, Kwan-Soon
    • Journal of Environmental Impact Assessment
    • /
    • v.7 no.2
    • /
    • pp.37-51
    • /
    • 1998
  • This study was carried out to lead the scientific management of the urban forest by estimating the forest environment. Forest environmental information was constructed using IDRISI system based on survey data, soil, plant, and digital elevation data. Forest environmental information was consisted of soil depth, soil organic content, soil hardness and parent rock as a soil environmental factor, and forest community, tree age, crown density as a plant environmental factor. Plant activity and topographic environment also were analyzed by using remote sensing data and digital elevation data. Environmental function of urban forest was estimated based on results of soil conservation and forest productivity. 70% of urban forest is located in elevation of lower than 200m and 55% of forest area have the slope of lower than 15 degree. Analyzed soil conservation status and forest productivity were almost the same as the soil chemical properties of collected soil sample and the vegetation index estimated using remote sensing data, respectively. Thus, the constructed forest environmental information could be useful to give some ideas for management of urban forest ecosystem and establishment of environmental conservation planning, including forests, in Taejon. The best forest environmental function was appeared at the natural ecology preservation zone. Current natural parks and urban parks were appeared to establish the environmental conservation plan for further development. The worst forest environmental function was appeared at the forest near to the industrial area and an overall and systematic plan was required for the soil management and high forest productivity because these forest was developing a severe soil acidification and having a low forest productivity.

  • PDF

Buffer Capacity of So Horizon Soils of Andisols from Jeju Island: Solubility Effect of Mineral Phases (제주도 Andisols Bo층 토양의 산성화에 대한 완충능력: 광물상 용해도 특성의 영향)

  • 이규호;송윤구;문지원;문희수
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.114-121
    • /
    • 2002
  • Buffer capacities for two Bo horizon soils or Andisols developed from different parent materials have been investigated. The titration curves from column leaching experiment show that buffering occurred at pH 4.0 and 6.0. The buffer intensity or soil developed from pyroclastic materials (P-soil) is higher than that from basalts (B-soil). From batch test we have found that proto-imogolite and/or imogolite may control Al solubility as well as $Al(OH) _3$in the moderate acid condition. The buffer intensities ($\beta$) of P-soils were plotted on the theoretical buffering curve of $Al(OH)_3$, while $\beta$ of B-soils approached to that of proto-imogolite, which shows the solubility of short-range-order materials in P-soil control the buffer capacity. Buffering at pH 6.0 is thought to be the result of dissolution of some silicate clays and exchange reactions between $H^{+ }$and base-forming cations. Considering the amount of annual acid precipitation, aluminum solubility of Andisols, and the low BS (Base Saturation percentage), it can be predicted that prolonged acid precipitation will reduce the buffer capacity of soils and lead to soil acidification.

Effects of Simulated Acid Rain on the Growth, Nutrient Status of Korean Pine (Pinus koraiensis) Seedlings and Soil Acidification (인공산성우(人工酸性雨)가 잣나무 묘목(苗木)의 생장(生長), 영양상태(營養狀態) 및 토양산성화(土壤酸性化)에 미치는 영향(影響))

  • Jin, Hyun-O;Kim, Eun-Young;Lee, Choong Hwa
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.3
    • /
    • pp.422-430
    • /
    • 2000
  • Three-year-old Pinus koraiensis seedlings, transplanted in brown forest soils originating from granite were treated with simulated acid rain of pH concentrations 5.6(control), 4.0, 3.0, 2.5 and 2.0 for 210 days from April 21 to November 17, 1999. Visible injury of the seedlings were observed at the pH 2.0 and pH 2.5 treatments. The total dry weight of the seedlings decreased at pH 2.0 treatment compared with that of the control, and T/R ratio increased at pH 2.0 treatment compared with others. The elements in each part of the seedlings, concentrations of Ca, P and content of chlorophyll in needles increased at the pH 2.0 treatment compared with the control. The concentration of N in the needles of the seedlings increased as the soil pH decreased. As the treated pH was lowered, soil pH has decreased, and concentrations of Ca, Mg, Al, and Mn increased, especially at pH 4.4. In addition, there was a strong correlation(r=0.90, p<0.05 ; r=-0.94, p<0.01) between the dry weight of the seedlings and the pH and Al concentration of the soils. Therefore, the pH and Al concentration in the soil may be useful indicator for assessing the effect of acid rain on the growth of woody plants.

  • PDF

Growth of Pinus densiflora Seedlings in Artificially Acidified Soils (인위적인 토양 산성화가 소나무 묘목의 생장에 미치는 영향)

  • Lee, Choong-Hwa;Lee, Seung-Woo;Kim, Eun-Young;Kim, Young-Kul;Byun, Jae-Kyoung;Won, Heong-Gyu;Jin, Hyun-O
    • The Korean Journal of Ecology
    • /
    • v.28 no.6
    • /
    • pp.389-393
    • /
    • 2005
  • This study was carried out to investigate the effects of soil acidification on the growth of 3-year-old Pinus densiflora seedlings grown for 21 weeks in brown forest soils acidified with $H_2SO_4$ solution. The concentrations of Al in the acidified soils were increased with increasing amount of $H^+$ added to the soil. The total dry weight of the seedlings was reduced by the addition of the $H_2SO_4$ solution. In addition, there was a strong positive correlation (r=0.97, p<0.01) between the dry weight of the seedlings and the molar (Ca+Mg+K)/Al ratio of the soil. The seedlings with the molar (Ca+Mg+K)/Al ratio of 1.0 resulted from approximately 50% growth reduction compared with the control value. The results suggest that the molar (Ca+Mg+K)/Al ratio of the soil may be a useful indicator for assessing the critical load of acid deposition.

Nutrient Recycling : The European Experience - Review -

  • Hall, J.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.4
    • /
    • pp.667-674
    • /
    • 1999
  • Intensive livestock production has increased dramatically in Europe since the 1960s, particularly. in Northern and Central European countries, resulting in large increases in the nutrient pollution of surface and ground waters and in atmospheric emissions of ammonia. This has arisen due to inadequate management of the large amounts manure produced, particularly where there has been insufficient land area used for efficient nutrient reuse in crop production. Nutrient pollution from intensive livestock production has progressively degraded the quality of water resources in many parts of Europe, with eutrophication of many inland and coastal waters, as well as soil acidification and ecosystem degradation. These problems have been known for many years, and although there are various international agreements on transboundary pollution, it is largely left to individual countries to set and enforce standards. Consequently, a number of different approaches are employed, although the common feature of these is to encourage farmers to use the nutrients in animal manures efficiently according to crop requirements, which also reduces the potential for accumulation in soil and subsequent loss to the environment. This paper reviews nutrient production and use in Europe and some of the strategies employed to avoid and reduce nutrient pollution.

Present State and Strategies on Environmental Pollution by Animal Wastes (축산분뇨에 의한 환경오염현황과 대책)

  • 이명규;이재일
    • Journal of Animal Environmental Science
    • /
    • v.2 no.1
    • /
    • pp.63-78
    • /
    • 1996
  • The main purpose of this research project is to monitor the present state of agricultural environment and to develope the countermeasures for the protection of the environment from the pollution by animal wastes. The results of this research were described largely 3 parts, 1) Monitoring of present state of environmental pollution by animal wastes, 2) Monitoring of animal wastes treatment technology, 3) Strategies for the protection of environmental pollution from animal wastes in future. The current most important problems from animal wastes are water pollution and air pollution commonly regardless of domestic or foreign country. Especially, intensive livestocks breeding pattern in restricted area is actually a real reason of eutrophication, soil acidification, ground water contamination, irrigation water pollution. As a result from this research project, authors recommend the 3 type of strategies for the protection of environmental pollution by animal wastes, 1 . Development of non-discharge type of wastes treatment technology 2. Manufacturing local structure for animal waste recycling system 3. Development of new international environmental program for transfer bioresource and soil environment prevention.

  • PDF

A Study on the Development of Soil Neutrailizing-agent using Waste Materials (Waste-lime, Oyster, Bottom-ash) (폐자원(폐석회, 굴패각, 바닥재)을 이용한 토양 중화제 개발 연구)

  • Oh, SeungJin;Cho, Mihyeon;Park, Chan-O;Jung, Moon-Ho;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.92-101
    • /
    • 2012
  • Korea shows the soil pH is 5.8 ~ 6.2 by many factors including the geological structure and climate condition. There is known as the cause for soil acidification by weathering of the mineral, excessive use of the chemical fertilizer, and extensively diffused acid rain. The purpose of research is environmentally-friendly material neutralization technology development utilizing the waste resources against by acid soil. The experiment analyze the physico-chemical property of the acid soil and waste resource materials (waste lime, oyster shell, bottom ash). The Batch-Test was performed under 3 stage. As a result, the acid soil showed up acid soil about 3.19. And waste lime, oyster, bottom ash showed the alkalinity with 9.62, 10.08, 9.17. In case of 1 batch-test experimental result, waste lime and oyster shell, the alkalinity was shown over 7.5 and the good efficiency was showed, on the other hands, the bottom ash showed the pH 4 the neutralization efficiency which is low. waste resource materials to be applied to 2 steps was chosen as the waste lime except the bottom ash and oyster. In 2 step batch-test experiment, it was exposed to be the most appropriate in case of doing the combination ratio of the waste lime and oyster shell with 9 : 1. It was exposed to be efficient most in the effeciency and aspect of economical efficiency combination ratio of the soil and materials was 9.6 : 0.6 with 3 step batch-test experimental result.

Effects of mining activities on Nano-soil management using artificial intelligence models of ANN and ELM

  • Liu, Qi;Peng, Kang;Zeng, Jie;Marzouki, Riadh;Majdi, Ali;Jan, Amin;Salameh, Anas A.;Assilzadeh, Hamid
    • Advances in nano research
    • /
    • v.12 no.6
    • /
    • pp.549-566
    • /
    • 2022
  • Mining of ore minerals (sfalerite, cinnabar, and chalcopyrite) from the old mine has led in significant environmental effects as contamination of soils and plants and acidification of water. Also, nanoparticles (NP) have obtained global importance because of their widespread usage in daily life, unique properties, and rapid development in the field of nanotechnology. Regarding their usage in various fields, it is suggested that soil is the final environmental sink for NPs. Nanoparticles with excessive reactivity and deliverability may be carried out as amendments to enhance soil quality, mitigate soil contaminations, make certain secure land-software of the traditional change substances and enhance soil erosion control. Meanwhile, there's no record on the usage of Nano superior substances for mine soil reclamation. In this study, five soil specimens have been tested at 4 sites inside the region of mine (<100 m) to study zeolites, and iron sulfide nanoparticles. Also, through using Artificial Neural Network (ANN) and Extreme Learning Machine (ELM), this study has tried to appropriately estimate the mechanical properties of soil under the effect of these Nano particles. Considering the RMSE and R2 values, Zeolite Nano materials could enhance the mine soil fine through increasing the clay-silt fractions, increasing the water holding capacity, removing toxins and improving nutrient levels. Also, adding iron sulfide minerals to the soils would possibly exacerbate the soil acidity problems at a mining site.