• 제목/요약/키워드: soil Interaction

검색결과 1,162건 처리시간 0.03초

The effect of potash on the growth and yields of soybean at different level of soil fertility and application of fertilizer (토양(土壤)과 시비(施肥)를 달리할때 대두생육(大豆生育)에 미치는 가리(加里)의 영향(影響))

  • Cho, C.Y.;Maeng, D.W.
    • Applied Biological Chemistry
    • /
    • 제10권
    • /
    • pp.107-112
    • /
    • 1968
  • In order to study the effect of potash on the growth and yields of Soybean at different level of soil fertility and application of fertilizer (nitrogen, phosphate and calcium), $2^3$factorical experiment was carried out by pat culture with variety 'Chang-dan-baec-muc' which is most spreaded variety in Korea. The experiment consisted of five replications in a randomized block experiment with three factors (soil, fertilization and potash). Treatment were at two levels; infertile and fertile soil, none and some of fertilization and potash. Thus, the experiment comprised eight treatment combinations which consisted of all combinations. The results of this experiment are as follows: 1. No effect of each of three factors on flowering date was found. 2. Leaf-yellowing and maturing date was quickened on the fertile soil but no effect of fertilization and potash was found. 3. More premature leaf-yellowing was found on the fertile soil. 4. Deeper leaf colour cuss showed on the fertile soil and in the case of fertilization but no effect of potash was found. 5. Increasing tendency of following character: length and width of leaf, height and dia of stem, number of branches and pods; was most remarkable on the fertile soil. Application of fertilizer showed also remarkable tendency of increasing, while increasing tendency of potash was the least. 6. Same tendency was found with following charactors; weight of total plant. stem and shell, and commercial grains, weight of 100 grain and number of commercial grains. 7. As the results of analysis of variance for weight of commercial grain it, was found the teach of the three factors increased soybean yields significantly (weight of commercial grain) but the effect of potash was less than the other two factors. No significant interaction was found among three factors. 8. Greater effect of potash on increasing soybean yields was found on the fertile soil, and in the case of fertilization.

  • PDF

The Effect of Cd and Zn Elements Applied to Soil on the Growth and their Uptake of Corn Plant (토양중(土壤中) 중금속(重金屬)(Cd, Zn)의 처리(處理)가 옥수수의 생육(生育) 및 흡수(吸收)에 미치는 영향(影響))

  • Lee, Min-Hyo;Kim, Bok-Young
    • Korean Journal of Environmental Agriculture
    • /
    • 제4권1호
    • /
    • pp.11-17
    • /
    • 1985
  • A pot experiment was carried out to investigate the effect of Cd and Zn added to soil on the growth, peroxidase activity, chlorophyll content, inorganic components, and interaction between Cd and Zn in corn plant. The results obtained are as follows. Both Cd and Zn reduced dry weight and height of corn plant. Peroxidase activity of leaves increased in higher Cd content of shoot but adverse trend was shown with increasing Zn content of shoots. Chlorophyll contents were significantly decreased with increase of both Cd and Zn content of shoots. Higher soil Cd levels increased N content but decreased P, K, Ca, Mg and $SiO_2$ content in plant. Wherease higher Zn levels in soil increased P and $SiO_2$ content but decreased N, Ca, Mg content in plant. The total Cd and Zn uptake of shoot increased with time but the Cd and Zn content of shoot showed no tendency. Cadmium uptake by Zn application was reduced in higher Zn levels with time while Zn uptake by Cd application showed adverse trend.

  • PDF

The response of a single pile to open face tunnelling (Open face 터널시공으로 인한 단독말뚝의 거동)

  • Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • 제14권5호
    • /
    • pp.529-545
    • /
    • 2012
  • Three-dimensional (3D) finite element analyses have been performed to study the behaviour of a single pile to open face tunnelling in stiff clay. Several key factors such as tunnelling-induced ground and pile settlement, and shear transfer mechanism have been studied in detail. Tunnelling resulted in the development of pile settlement larger than the Greenfield soil surface settlement. In addition, due to changes in the shear transfer between the pile and the soil next to the pile with tunnel advancement, axial force distributions along the pile change drastically. The apparent allowable pile capacity was reduced up to about 30% due to the development of tunnelling-induced pile head settlement. The skin friction on the pile was increased with tunnel advancement associated with the changes of soil stresses and ground deformation and hence axial pile force distribution was reduced. Maximum tunnelling-induced tensile force on the pile was about 21% of the designed pile capacity. The zone of influence on the pile behaviour in the longitudinal direction may be identified as ${\pm}1$-2D (D: tunnel diameter) from the pile centre (behind and ahead of the pile axis in the longitudinal direction) based on the analysis conditions assumed in the current study. Negative excess pore pressure was mobilised near the pile tip, while positive excess pore pressure was computed at the upper part of the pile. It has been found that the serviceability of a pile experiencing adjacent tunnelling is more affected by pile settlement than axial pile force changes.

Numerical Study on Lateral Pile Behaviors of Piled Gravity Base Foundations for Offshore Wind Turbine (수치해석을 통한 해상풍력 말뚝지지중력식기초의 수평거동 분석)

  • Seo, Ji-Hoon;Choo, Yun Wook;Goo, Jeong-Min;Kim, Youngho;Park, Jae Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • 제32권11호
    • /
    • pp.5-19
    • /
    • 2016
  • This paper presents the results from three-dimensional finite element (FE) analysis undertaken to provide insight into the lateral behaviors of piled gravity base foundation (GBF) for offshore wind turbine. The piled GBF was originally developed to support the gravity based foundation in very soft clay soil. A GBF is supported by five piles in a cross arrangement to achieve additional vertical bearing capacity. This study considered four different cases including a) single pile, b) three-by-three group pile (with nine piles), c) cross-arrangement group pile (with five piles), and d) piled GBF. All the cases were installed in homogenous soft clay soil with undrained shear strength of 20 kPa. From the numerical results, p-y curves and thus P-multiplier was back-calculated. For the group pile cases, the group effect decreased with increasing the number of piles. Interestingly, for the piled GBF, the P-multipliers showed a unique trend, compared to the group pile cases. This study concluded that the global lateral behaviour of the piled GBF was influenced strongly by the interaction between GBF and contacted soil surface.

Studies on Nutrio-physiological Response of Rice Plant to Root Environment (근부환경(根部環境)에 따른 수도(水稻)의 영양생리적(營養生理的) 반응(反應)에 관(關)한 연구(硏究))

  • Park, J.K.;Kim, Y.S.;Oh, W.K.;Park, H.;Yazawa, F.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제2권1호
    • /
    • pp.53-68
    • /
    • 1969
  • The nutriophysiological response of rice plant to root environment was investigated with eye observation of root development and rhizosphere in situation. The results may be summarized as follows: 1) The quick decomposition of organic matter, added in low yield soil, caused that the origainal organic matter content was reached very quickly, in spite of it low value. In high yield soil the reverse was seen. 2) In low yield soil root development, root activity and T/R value were very low, whereas addition of organic matter lowered them still wore. This might be contributed to gas bubbles around the root by the decomposition of organic matter. 3) Varietal difference in the response to root environment was clear. Suwon 82 was more susceptible to growth-inhibitine conditions on low-yield soil than Norin 25. 4) Potassium uptake was mostly hindered by organic matter, while some factors in soil hindered mostly posphorus uptake. When the organic matter was added to such soil, the effect of them resulted in multiple interaction. 5) The root activity showed a correlation coeffieient of 0.839, 0.834 and 0.948 at 1% level with the number of root, yield of aerial part and root yield, respectively. At 5% level the root-activity showed correlation-coefficient of 0.751, 0.670 and 0.769 with the uptake of the aerial part of respectively. N, P and K and a correlation-coefficient of 0.729, 0.742 and 0.815 with the uptake of the root of respectively N.P. and K. So especially for K-uptake a high correlation with the root-activity was found. 6) The nitrogen content of the roots in low-yield soil was higher than in high-yield soil, while the content in the upper part showed the reverse. It may suggest ammonium toxicity in the root. In low-yield soil Potassium and Phosphorus content was low in both the root and aerial part, and in the latter particularly in the culm and leaf sheath. 7) The content of reducing sugar, non-recuding sugar, starh and eugar, total carbohydrates in the aerial part of plants in low yield soil was higher than in high yield soil. The content of them, especially of reducing sugar in the roots was lower. It may be caused by abnormal metabolic consumption of sugar in the root. 8) Sulfur content was very high in the aerial part, especially in leaf blade of plants on low yield soil and $P_2O_5/S$ value of the leaf blade was one fifth of that in high yield soil. It suggests a possible toxic effect of sulfate ion on photophosphorization. 9) The high value of $Fe/P_2O_5$ of the aerial part of plants in low yield soil suggests the possible formation of solid $Fe/PO_4$ as a mechanical hindrance for the translocation of nutrients. 10) Translocation of nutrients in the plant was very poor and most nutrients were accumulated in the root in low yield soil. That might contributed to the lack of energy sources and mechanical hindrance. 11) The amount of roots in high yield soil, was greater than that in low yield soil. The in high-yield soil was deep, distribution of the roots whereas in the low-yield soil the root-distribution was mainly in the top-layer. Without application of Nitrogen fertilizer the roots were mainly distributed in the upper 7cm. of topsoil. With 120 kg N/ha. root were more concentrated in the layer between 7cm. and 14cm. depth. The amount of roots increased with the amount of fertilizer applied.

  • PDF

Case Study on Reliability Analysis of Offshore Wind Turbine Foundation (해상풍력기초 신뢰성해석 사례분석 연구)

  • Yoon, Gillim;Kim, Hongyeon
    • Journal of the Korean GEO-environmental Society
    • /
    • 제13권12호
    • /
    • pp.91-98
    • /
    • 2012
  • In this paper, the behavior of offshore wind turbine(OWT) foundation which is modeled by using existing design method and FEM is compared. When the same type of foundation is designed under the same sea and ground condition, the behavior characteristics with each model are compared. As a result, the member forces between apparent fixity and distributed spring type foundation which consider the ground stiffness are not different markedly, while fixed-base type foundation shows relatively lower member forces, which results in smaller safety margin. In other words, considering ground stiffness is reasonable because soil-pile interaction affects significantly on the analysis result. A case study with a monopile shows significant errors between p-y and FEM model at the head and tip of the pile. Also, it shows that the errors at the tip with diameter increase of the pile is larger. Thus, considering ground characteristics and engineering judgment are necessary in practice. A comparison of reliability analysis between tripod and monopile type foundation on the same condition shows larger probability of failure in monopile type and it indicates that the safety margin of monopile type can be lower.

Studies on Behavior Characteristics of Retrofitted Cut-and-Cover Underground Station Using Centrifuge Test Results (원심모형실험을 이용한 내진 보강된 개착식 지하역사의 거동특성 연구)

  • Kim, Jin-Ho;Yi, Na-Hyun;Lee, Hoo-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제21권2호
    • /
    • pp.24-33
    • /
    • 2017
  • Domestic urban railway underground station structures, which were built in the 1970s ad 1980s, had been constructed as Cut-and-Cover construction system without seismic design. Because the trends of earthquake occurrence is constantly increasing all over the world as well as the Korean Peninsula, massive human casualties and severe properties and structures damage might be occurred in an non-retrofitted underground station during an earthquake above a certain scale. Therefore, to evaluate the retrofit effect and soil-structure interaction of seismic retrofitted underground station, a centrifugal shaking table test with enhanced stiffness on its structural main member are carried out on 1/60 scaled model using the Kobe and Northridge earthquakes. The seismic retrofitted members, which are columns, side walls, and slabs, are evaluated to comparing with existing non-retrofitted centrifuge test results Also, to simulate the scaled ground using variation of shear velocity according to site conditions such as ground depth and density, resonant column test is performed. From the test results, the relative displacement behavior between ground and structures shows comparatively similar in ground, but is increased on ground surface. The seismic retrofit effects were measured using relative displacements and moment behavior of column and side walls rather than slabs. Additionally, earthquake wave can be used to main design factor due to large structural deformation on Kobe earthquake wave than Norhridge earthquake wave.

A Study on the Pile Behaviour Adjacent to Tunnel Using Photo Imaging Process and Numerical Analysis (Photo Imaging Process 기법 및 수치해석을 이용한 터널주변 파일기초거동에 대한 연구)

  • Lee Yong-Joo
    • Journal of the Korean Geotechnical Society
    • /
    • 제21권9호
    • /
    • pp.87-102
    • /
    • 2005
  • In the congested urban areas, tunnelling close to existing structures or services often occurs due to the lack of surface space so that tunnelling-induced ground movements may cause a serious damage to the adjacent structures. This study focused on the two dimensional laboratory model pile-soil-tunnelling interaction tests using a close range photogrammetric technique. Testing equipments and procedures were Introduced, particularly features of aluminium rods regarded as the frictional granular material. The experimental result showed that the photo imaging process by the VMS and EngVis programs proved to be a useful tool in measuring the pile tip movements during the tunnelling. Consequently, the normalised pile tip movement data for the influence zones can be generated by the laboratory model tests using the Photogrammetric technique. This study presents influence zones associated with the normalized pile tip settlements due to tunnelling in the cohesionless material. The influence zones were Identified by both a laboratory model test and a numerical analysis. The normalized pile tip movements from the model test were in good agreement with the numerical analysis result. The influence zones proposed in this study could be used to decide the reasonable location of tunnel construction in the planning stage. However, the scale of model pile and model tunnel sizes must be carefully adjusted as real ones for practical application considering the ground conditions at a given site.

A Simple Seismic Vulnerability Sorting Method for Electric Power Utility Tunnels (전력구의 간편 지진취약도 선별법)

  • Kang, Choonghyun;Huh, Jungwon;Park, Inn-Joon;Hwang, Kyeong Min;Jang, Jung Bum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제22권5호
    • /
    • pp.110-118
    • /
    • 2018
  • Due to recent earthquakes, there is a growing awareness that Korea is not a safe zone for earthquakes any more. Therefore, the review of various aspects of the seismic safety of the infrastructures are being carried out. Because of the characteristics of the underground structure buried in the ground, the electric power utility tunnels must be considered not only for the inertia and load capacity of the structure itself but also the characteristics of the surrounding soils. An extensive and accurate numerical analysis is inevitably required in order to consider the interaction with the ground, but it is difficult to apply the soil-structure interaction analyses, which generally requires high cost and extensive time, to all electric power utility tunnel structures. In this study, the major design variables including soil characteristics are considered as independent variables, and the seismic safety factor, which is the result of the numerical analysis, is considered as a dependent variable. Thus, a method is proposed to select vulnerable electric power utility tunnels with low seismic safety factor while excluding costly and time-consuming numerical analyses through the direct correlation analysis between independent and dependent variables. Equations of boundary limits were derived based on the distribution of the seismic safety factor and the cover depth and rebar amounts with high correlation relationship. Consequently, a very efficient and simple approach is proposed to select vulnerable electric power utility tunnels without intensive numerical analyses. Among the 108 electric power utility tunnels that were investigated in this paper, 30% were screened as fragile structures, and it is confirmed that the screening method is valid by checking the safety factors of the fragile structure. The approach is relatively very simple to use and easy to expand, and can be conveniently applied to additional data to be obtained in the future.

A probabilistic fragility evaluation method of a RC box tunnel subjected to earthquake loadings (지진하중을 받는 RC 박스터널의 확률론적 취약도 평가기법)

  • Huh, Jungwon;Le, Thai Son;Kang, Choonghyun;Kwak, Kiseok;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • 제19권2호
    • /
    • pp.143-159
    • /
    • 2017
  • A probabilistic fragility assessment procedure is developed in this paper to predict risks of damage arising from seismic loading to the two-cell RC box tunnel. Especially, the paper focuses on establishing a simplified methodology to derive fragility curves which are an indispensable ingredient of seismic fragility assessment. In consideration of soil-structure interaction (SSI) effect, the ground response acceleration method for buried structure (GRAMBS) is used in the proposed approach to estimate the dynamic response behavior of the structures. In addition, the damage states of tunnels are identified by conducting the pushover analyses and Latin Hypercube sampling (LHS) technique is employed to consider the uncertainties associated with design variables. To illustrate the concepts described, a numerical analysis is conducted and fragility curves are developed for a large set of artificially generated ground motions satisfying a design spectrum. The seismic fragility curves are represented by two-parameter lognormal distribution function and its two parameters, namely the median and log-standard deviation, are estimated using the maximum likelihood estimates (MLE) method.