• Title/Summary/Keyword: soil Interaction

Search Result 1,162, Processing Time 0.024 seconds

Substrate Interactions on Biodegradation of Benzene, Toluene, Ethylbenzene and Xylene Isomers(BTEX) by Indigenous Soil Microorganisms (토양미생물을 이용한 Benzene, Toluene, Ethylbenzene 그리고 Xylene isomers(BTEX)의 분해시 기질반응)

  • La, Hyun-Joo;Chang, Soon-Woong;Lee, Si-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.375-383
    • /
    • 2000
  • A mixed culture isolated from petroleum-contaminated soil was enriched on toluene as a sole carbon and energy source, and degradation characteristics of BTEX(Benzene, Toluene, Ethylbenzene, Xylenes) was observed. In the single-substrate experiments, all the BTEX compounds were degraded, and it was degraded as following orders; toluene, benzene, ethylbenzene, and p-xylene. In the degradation experiments of BTEX mixtures, the degradation rate was decreased compared to that in the single substrate experiment and ethylbenzene was degraded faster than benzene. In the experiments of binary-mixtures, various substrate interactions such as inhibition, stimulation, and non-interaction were observed, and ethylbenzene was shown to be most potent inhibitor of BTEX degradation. In the degradation characteristic studies of xylene isomers, m-xylene and p-xylene were degraded as carbon sources, and it was stimulated in the presence of either benzene or toluene. However, degradation of o-xylene was enhanced only in the presence of benzene.

  • PDF

A preliminary numerical analysis study on the seismic stability of a building and underground structure by using SSI (SSI를 이용한 건물과 인접지하구조물의 내진 안정성에 대한 기초 수치해석 연구)

  • You, Kwang-Ho;Kim, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.23-38
    • /
    • 2018
  • Up to now, most of studies on seismic analysis have been limited to analyze buildings and underground structures individually so that the interaction between them could not be analyzed effectively. Thus, in this study, a dynamic analysis was conducted for soil-structure interaction with a complex underground facility composed of a building and an adjacent underground structure constructed on a surface soil and the bed rock ground conditions. Seismic stability was analyzed based on interstory drift ratio and bending stress of structure members. As a result, an underground structure has more effect on a high-rise building than a low-rise building. However the above structures were proved to be favorable for seismic stability. On the other hand, tensile bending stresses exceeded the allowable value at the underground part of the building and the adjacent underground structure so that it turned out that the underground part could be weaker than the above part. Therefore, it is inferred that above and underground structures should be analyzed simultaneously for better prediction of their interaction behavior during seismic analyses because there exist various structures around buildings in big cities.

1g Shaking Table Test on Soil and Stone-column Interaction Behavior under Seismic Loading (1g 진동대 실험을 이용한 지반-스톤칼럼의 상호작용 거동에 관한 연구)

  • Kim, Jin-Man;Ryu, Jeong-Ho;Kim, Mi-Na;Son, Su-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.115-124
    • /
    • 2012
  • The responses of stone column-improved ground under seismic loading are investigated using a series of 1g shaking table tests. These tests show similar results to those of one dimensional numerical models for stone column-improved ground based on Baez's assumption on the soil and stone-column interaction. The experimental and numerical results show that the stone column can prevent large shear deformations incurred due to cyclic softening in clayey deposits, but they also show that the surface acceleration in the improved clayey deposits may amplify more than that in unimproved clayey deposits when subjected to short periodic seismic motions.

A Group Pile Effect on Changing Size of Pile Cap in Group Pile under Sand Soil in Earthquake (지진 시 사질토 지반에 근입된 무리말뚝의 말뚝 캡 크기가 무리말뚝 효과에 미치는 영향)

  • Lee, Hyunkun;Ahn, Kwangkuk;Kang, Hongsig
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.10
    • /
    • pp.39-46
    • /
    • 2019
  • The interaction between the ground and structures should be considered for seismic design of group piles supporting the superstructure. The p-y curve has been used widely for the analysis of nonlinear relationship between the ground and structures, and various researches have conducted to apply the dynamic p-y curve for seismic design of group piles. This curve considers the interaction between the ground and structures under the dynamic load such as an earthquake. However the supported effect by the pile cap and the interaction by inertia behavior of superstructures. Therefore, the shaking table test was conducted to verify the effect of the change of the pile cap in group piles supporting superstructures embedded in sandy soil. The test condition is that the arrangement and distance between centers of piles are fixed and the length of the pile cap is changed for various distances between the pile cap side and the pile center. The result shows that the distance between the pile cap side and the pile center have an effect on the dynamic p-y curve and the effect of group piles.

The Behavior of Piled Bridge Abutments Subjected to Lateral Soil Movements - A Study on the Centrifuge Model Tests - (측방유동을 받는 교대말뚝기초의 거동분석 (I) - 원심모형실험 연구 -)

  • 서정주;서동희;정상섬;김유석
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.5-19
    • /
    • 2003
  • A series of centrifuge model tests were conducted to investigate the behavior of piled bridge abutments subjected to lateral soil movements induced by approach embankments. The effect of clay layer depth and the rate of embankment construction on piled bridge abutments are the main focus of this study. Tests were performed for two loading types: (1) incremental loading applied in six lifts to the final embankment height; (2) instant loading corresponding to the final embankment height applied in one lift quickly. A variety of instrumentations such as LVDTs, strain gauges, earth pressure transducers, and pore pressure transducers are installed in designed positions in order to clarify the soil-pile interaction and the short- and long-term behavior for piled bridge abutments adjacent to surcharge loads. Based on the results of a series of centrifuge model tests, the distribution of lateral flow induced by staged embankment construction has trapezoidal distribution. The maximum lateral soil pressure is about 0.75$\gamma$H at surcharge loading stage, and about 0.35 $\gamma$H at over 80% consolidated stage.

The Response of a Single Pile and Pile Groups to Tunnelling Performed in Weathered Rock (풍화암에서 실시된 터널굴착으로 인한 단독말뚝 및 군말뚝의 거동)

  • Lee, Cheol Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5C
    • /
    • pp.199-210
    • /
    • 2012
  • The effects of tunnelling in weak weathered rock on the behaviour of a pre-existing single pile and pile groups ($3{\times}3$ and $5{\times}5$ pile groups) above a tunnel have been studied by carrying out three-dimensional (3D) elasto-plastic numerical analyses. Numerical modelling of such effects considers the response of the single pile and pile groups in terms of tunnelling-induced ground and pile settlement as well as changes of the shear transfer mechanism at the pile-soil interface due to tunnelling. Due to changes in the relative shear displacement between the pile and the soil at the pile-soil interface with tunnel advancement, the shear stresses and axial pile force distributions along the pile change drastically. Based on the computed results, upward shear stresses are induced up to about Z/L=0.775 from the pile top, while downward shear stresses are mobilised below Z/L=0.775, resulting in a reduction in the axial pile force distribution with depth equivalent to a net increase in the tensile force on the pile. A maximum tensile force of about $0.36P_a$ developed on the single pile solely due to tunnelling, where $P_a$ is the service axial pile loading prior to tunnelling. The degree of interface shear strength mobilisation at the pile-soil interface was found to be a key factor governing pile-soil-tunnelling interaction. Overall it has been found that the larger the number of piles, the greater is the effect of tunnelling on the piles in terms of pile settlement, while changes of the axial pile forces for the piles in the groups are smaller than for a single pile due to the shielding effect. The reduction of apparent allowable pile capacity due to tunnelling-induced pile head settlement was significant, in particular for piles inside the groups.

Application of Simple Biosphere Model (SiB2) to Ecological Research (Simple Biosphere Model 2 (SiB2)의 생태학적 응용)

  • 김원식;조재일
    • The Korean Journal of Ecology
    • /
    • v.27 no.4
    • /
    • pp.245-256
    • /
    • 2004
  • The simple biosphere model 2 (SiB2), which is one of the land surface models, simulates the exchange of momentum, energy and mass such as water vapor and carbon dioxide between atmosphere and biosphere, and includes the biochemical sub-model for representation of stomatal conductance and photosynthetical activities. Throughout the SiB2 simulation, the significant information not only to understand of water and carbon budget but also to make an analysis of interaction such as feed-back and-forward between environment and vegetation is given. Using revised SiB2-Paddy, one sample study which is the evaluation of the runoff in Chaophraya river basin according to land use/cover change is presented in this review. Hence, SiB2 is available in order to ecological studied, if revised SiB2 for realistic simulation about soil respiration, computing leaf area index, vegetation competition and soil moisture is improved.

Disturbed State Modeling for Dynamic Analysis of Soil-Structure Interface (흙-구조물 경계면의 동역학적해석을 위한 교란상태 모델링)

  • Park, Inn-Joon;Yoo, Ji-Hyeung;Kim, Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.3
    • /
    • pp.5-13
    • /
    • 2000
  • In this study, the Disturbed State Concept (DSC) constitutive model is calibrated and modified for steel-sand interface by using the HiS S model for relative intact (Rl) state and the critical state model for the fuBy adjusted (FA) part in the material. The general formulation for implementation is developed. Then, the DSC model with modification for interface is implemented in finite element program based on the generalized Biot's theory. The interface test under one-way monotonic and two-way cyclic loading were numerically simulated using the finite element program modified in this study. The DSC predictions show improved agreement with the observed results from laboratory test. Overall, the computer procedure with the DSC allows relatively improved simulation ofthe soil-structure interaction problems.oblems.

  • PDF

Seismic response and failure analyses of pile-supported transmission towers on layered ground

  • Pan, Haiyang;Li, Chao;Tian, Li
    • Structural Engineering and Mechanics
    • /
    • v.76 no.2
    • /
    • pp.223-237
    • /
    • 2020
  • Transmission towers have come to represent one of the most important infrastructures in today's society, which may suffer severe earthquakes during their service lives. However, in the conventional seismic analyses of transmission towers, the towers are normally assumed to be fixed on the ground without considering the effect of soil-structure interaction (SSI) on the pile-supported transmission tower. This assumption may lead to inaccurate seismic performance estimations of transmission towers. In the present study, the seismic response and failure analyses of pile-supported transmission towers considering SSI are comprehensively performed based on the finite element method. Specifically, two detailed finite element (FE) models of the employed pile-supported transmission tower with and without consideration of SSI effects are established in ABAQUS analysis platform, in which SSI is simulated by the classical p-y approach. A simulation method is developed to stochastically synthesize the earthquake ground motions at different soil depths (i.e. depth-varying ground motions, DVGMs). The impacts of SSI on the dynamic characteristic, seismic response and failure modes are investigated and discussed by using the generated FE models and ground motions. Numerical results show that the vibration mode shapes of the pile-supported transmission towers with and without SSI are basically same; however, SSI can significantly affect the dynamic characteristic by altering the vibration frequencies of different modes. Neglecting the SSI and the variability of earthquake motions at different depths may cause an underestimate and overestimate on the seismic responses, respectively. Moreover, the seismic failure mode of pile-supported transmission towers is also significantly impacted by the SSI and DVGMs.

Comparison of Modeling Methods of a Pile Foundation in Seismic Analysis of Bridge Piers (교각의 내진설계를 위한 말뚝기초의 모델링 기법 비교)

  • 김나엽;김성렬;전덕찬;김명모
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.6
    • /
    • pp.25-32
    • /
    • 2002
  • In the seismic designing of bridges, the pile foundation of bridge piers generally have been modeled to have a fixed end for its convenience and conservative designing. The fixed-end assumption, however, produces very conservative results in terms of the pier forces. Therefore, many other design methods are evolved to consider the flexibility of the pile foundation. In this study, the response spectrum analysis was performed for a bridge pier having a pile foundation. The shear force, moment, and displacement, which occurred at the pier column under an earthquake loading, were compared to analyze the effects of the modeling method, soil condition and the input earthquake response spectrum. In most cases, the fixed-end model gives larger design forces than flexible foundation models. However, when a long period earthquake is applied to the bridge pier on a soft clay foundation, it is found that the flexible foundation models give larger design forces than the fixed-end model. In the end, the reliability of several flexible foundation models was verified by comparing their results with those of a numerical analysis that considers the soil-structure interaction phenomenon in a rigorous manner.