• Title/Summary/Keyword: soil Interaction

Search Result 1,162, Processing Time 0.029 seconds

A Study on Load Transfer between Soil and Nail Using In-situ Pull-out Tests (현장인발시험을 통한 흙-네일의 하중 전이특성에 대한 연구)

  • Kim, Jong-Soo;Yi, Chang-Tok;Min, Kyong-Jun;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.167-174
    • /
    • 1999
  • A Land slide in Granitic Gneiss weathered soil was stabilized successfully with soil nailing using 929mm steel bar. To understand the behavior of load transfer between soil and nail, in-situ pdl-out tests were carried out. The strains of steel bars were measured using strain gauges during pull-out tests. Forces-strain data from laboratory tension tests on steel bar and grouted steel bar were examined to compare with those of the pull-out tests. Comparisons were made between the pull-out test results and laboratory test result to understand load transfer mechanism.

  • PDF

Application of DEM to Simulate Interaction between Soil and Tire Lug

  • Oida, A.;Ohkubo, S.
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • Using the modified DEM (Distinct Element Model), which we proposed, the effect of cross section of tire lug on the tire performance was simulated. Though the DEM has an advantage over the FEM when it is applied to simulate the behavior of discrete assembly of particles such as soil, there was still a problem in the case of conventional DEM, that the simulated movement of particles was too free. We constructed a new mechanical model (modified DEM) which can take account of the effect of adhesion between particles. It is shown that the soil deformation is simulated by the modified DEM better than the conventional DEM. Comparing the simulated soil reaction to the tire lug with the experimental results, the adequate DEM parameters were found. It is also indicated possible to find the effect of lug cross section shape on the tractive performance of tire by the DEM simulation.

  • PDF

Bearing capacity of geotextile-reinforced sand with varying fine fraction

  • Deb, Kousik;Konai, Sanku
    • Geomechanics and Engineering
    • /
    • v.6 no.1
    • /
    • pp.33-45
    • /
    • 2014
  • Use of geotextile as reinforcement material to improve the weak soil is a popular method these days. Tensile strength of geotextile and the soil-geotextile interaction are the major factors which influence the improvement of the soil. Change in fine content within the sand can change the interface behavior between soil and geotextile. In the present paper, the bearing capacity of unreinforced and geotextile-reinforced sand with different percentages of fines has been studied. A series of model tests have been carried out and the load settlement curves are obtained. The ultimate load carrying capacity of unreinforced and reinforced sand with different percentages of fines is compared. The interface behavior of sand and geotextile with various percentages of fines is also studied. It is observed that sand having around 5% of fine is suitable or permissible for bearing capacity improvement due to the application of geosynthetic reinforcement. The effectiveness of the reinforcement in load carrying capacity improvement decreases due to the addition of excessive amount of fines.

Failure mechanisms in coupled poro-plastic medium

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Nikolic, Mijo
    • Coupled systems mechanics
    • /
    • v.7 no.1
    • /
    • pp.43-59
    • /
    • 2018
  • The presence of the pore fluid strongly influences the reponse of the soil subjected to external loading and in many cases increases the risk of final failure. In this paper, we propose the use of a discrete beam lattice model with the aim to investigate the coupling effects of the solid and fluid phase on the response and failure mechanisms in the saturated soil. The discrete cohesive link lattice model used in this paper, is based on inelastic Timoshenko beam finite elements with enhanced kinematics in axial and transverse direction. The coupling equations for the soil-pore fluid interaction are derived from Terzaghi's principle of effective stresses, Biot's porous media theory and Darcy's law for fluid flow through porous media. The application of the model in soil mechanics is illustrated through several numerical simulations.

Field Measurements of Soil-Steel Bridge (파형강판을 이용한 지중-강판 교량의 시공현장계측)

  • 이종구;김경석;이종화;조성민;김명모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.331-338
    • /
    • 2001
  • The soil-steel bridges which were introduced in Korea recently are widely used instead of underpasses of highway or small bridges. This bridge is a kind of flexible buried conduit which sustain the applied load by the interaction with the backfill soil. The 6.25m din. round soil-steel bridge was instrumented so as to investigate the behavior of load sustenance, The axial forces and moments at the 7 locations around the metallic shell were calculated from the measurement of strains during backfilling. The maximum axial force and moment were compared with those of various design predictions. Finally, the stability of bridge was evaluated.

  • PDF

Parametric Study on Earthquake Responses of Soil-structure Interaction System by Substructure Method. (부분구조법에 의한 지반-구조물 상호작용 시스템의 지진응답 매재변수 해석)

  • 조양희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.117-125
    • /
    • 1997
  • ABSTRACT This paper presents results of parametric studies of the seismic responses of a reactor containment structure on layered base soil. Among the numerous parameters, this study concentrates on the effects of embedment of structure to the base soil, thickness of the soil layers, stiffness of the base soil, and the definition point of the input motion. For the analysis, a substructure method using frequency independent impedances is adopted. The method is based on the mode superposition method in time domain using the composite modal damping values of the SSI system computed from the ratio of dissipated energy to the strain energy for each mode. From the study results, the sensitives of each parameter on the earthquake responses have been suggested for the practical application of the substructure method of SSI analysis.

  • PDF

Behavior of geotextile reinforced flyash + clay-mix by laboratory evaluation

  • Vashi, Jigisha M.;Desai, Atul K.;Solanki, Chandresh H.
    • Geomechanics and Engineering
    • /
    • v.5 no.4
    • /
    • pp.331-342
    • /
    • 2013
  • The major factors that control the performance of reinforced soil structures is the interaction between the soil and the reinforcement. Thus it is necessary to obtain the accurate bond parameters to be used in the design of these structures. To evaluate the behavior of flyash + clay soil reinforced with a woven geotextile, 36 Unconsolidated-Undrained (UU) and 12 reinforced Consolidated-Undrainrained (CU) triaxial compression tests were conducted. The moisture content of soil during remolding, confining pressures and arrangement of geotextile layers were all varied so that the behavior of the sample could be examined. The stress strain patterns, drainage, modulus of deformation, effect of confinement pressures, effects of moisture content have been evaluated. The impact of moisture content in flyash + clay backfills on critical shear parameters was also studied to recommend placement moisture for compaction to MDD. The results indicate that geotextile reinforced flyash + clay backfill might be a viable alternative in reinforced soil structures if good-quality granular backfill material is not readily available.

Hydrogeochemical Characteristics of Groundwater in the Small Waterworks at Ulju Region, Ulsan (울산 울주지역 소규모 수도시설 지하수의 수리지화학적 특성 연구)

  • Kim, Dongsoo;Kim, MoonSu;Jo, Sungjin;Kim, Ikhyun;Lee, Heonmin;Hwang, Jongyoen;Park, Sunhwa;Jo, Hunje;Kim, Taeseung;Kim, Hyunkoo
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.5
    • /
    • pp.71-81
    • /
    • 2017
  • The hydrogeochemical characteristics of groundwater in the small waterworks are examined with 81 groundwater samples in Ulju region, Ulsan. The pH ranged in 6.3-8.2 and did not exceed the drinking water standards. Electrical conductivity ranged from $50{\mu}S/cm$ to $1,719{\mu}S/cm$. It indicated that the electrical conductivities in groundwaters at the study area are relatively low, compared with other groundwaters in Ulsan area. The calcium concentrations in groundwaters ranged from 3.55 to 113.01 mg/L, and sodium concentrations ranged from 2.02 to 65.50 mg/L. Nitrate concentrations ranged from 0 to 100.56 mg/L and potassium concentrations ranged from N.D (not detected) to 2.50 mg/L. Major cations and anions were mainly derived from the water-rock interaction involving feldspar, gypsum and calcite. The groundwaters were mainly the $Ca-(Na)-HCO_3$ type, classified as the early stage of groundwater evolutions. The correlation between electrical conductivities and Ca concentrations in groundwaters was relatively high ($R^2=0.74$). In the correlations between ions, the correlation coefficient between $SO_4$ and Ca was 0.65 and between Mg and $HCO_3$ was 0.65.

Cuboidal Infinite Elements for Soil-Structure-Interaction Analysis in Multi-Layered Half-Space (3차원 지반-구조물 상호작용해석을 위한 입방형 무한요소)

  • Seo, Choon-Gyo;Yun, Chung-Bang;Kim, Jae-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.39-50
    • /
    • 2007
  • This paper presents 3D infinite elements for the elastodynamic problem with multi-layered half-space. Five different types of infinite elements are formulated by using approximate expressions of multiple wave components for the wave function in multi-layered soil media. They are horizontal, horizontal-corner, vortical, vertical-corner and vertical-horizontal-comer infinite elements. The elements can effectively be used for simulating wane radiation problems with multiple wave components. Numerical example analyses are presented for rigid disk, square footings and embedded footing on homogeneous and layered half-space. The numerical results show the effectiveness of the proposed infinite elements.

Effect of near field earthquake on the monuments adjacent to underground tunnels using hybrid FEA-ANN technique

  • Jafarnia, Mohsen;Varzaghani, Mehdi Imani
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.757-768
    • /
    • 2016
  • In the past decades, effect of near field earthquake on the historical monuments has attracted the attention of researchers. So, many analyses in this regard have been presented. Tunnels as vital arteries play an important role in management after the earthquake crisis. However, digging tunnels and seismic effects of earthquake on the historical monuments have always been a challenge between engineers and historical supporters. So, in a case study, effect of near field earthquake on the historical monument was investigated. For this research, Finite Element Analysis (FEM) in soil environment and soil-structure interaction was used. In Plaxis 2D software, different accelerograms of near field earthquake were applied to the geometric definition. Analysis validations were performed based on the previous numerical studies. Creating a nonlinear relationship with space parameter, time, angular and numerical model outputs was of practical and critical importance. Hence, artificial Neural Network (ANN) was used and two linear layers and Tansig function were considered. Accuracy of the results was approved by the appropriate statistical test. Results of the study showed that buildings near and far from the tunnel had a special seismic behavior. Scattering of seismic waves on the underground tunnels on the adjacent buildings was influenced by their distance from the tunnel. Finally, a static test expressed optimal convergence of neural network and Plaxis.