• Title/Summary/Keyword: software-enabled control

Search Result 32, Processing Time 0.016 seconds

Building an Analytical Platform of Big Data for Quality Inspection in the Dairy Industry: A Machine Learning Approach (유제품 산업의 품질검사를 위한 빅데이터 플랫폼 개발: 머신러닝 접근법)

  • Hwang, Hyunseok;Lee, Sangil;Kim, Sunghyun;Lee, Sangwon
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.125-140
    • /
    • 2018
  • As one of the processes in the manufacturing industry, quality inspection inspects the intermediate products or final products to separate the good-quality goods that meet the quality management standard and the defective goods that do not. The manual inspection of quality in a mass production system may result in low consistency and efficiency. Therefore, the quality inspection of mass-produced products involves automatic checking and classifying by the machines in many processes. Although there are many preceding studies on improving or optimizing the process using the data generated in the production process, there have been many constraints with regard to actual implementation due to the technical limitations of processing a large volume of data in real time. The recent research studies on big data have improved the data processing technology and enabled collecting, processing, and analyzing process data in real time. This paper aims to propose the process and details of applying big data for quality inspection and examine the applicability of the proposed method to the dairy industry. We review the previous studies and propose a big data analysis procedure that is applicable to the manufacturing sector. To assess the feasibility of the proposed method, we applied two methods to one of the quality inspection processes in the dairy industry: convolutional neural network and random forest. We collected, processed, and analyzed the images of caps and straws in real time, and then determined whether the products were defective or not. The result confirmed that there was a drastic increase in classification accuracy compared to the quality inspection performed in the past.

Development of Industrial Embedded System Platform (산업용 임베디드 시스템 플랫폼 개발)

  • Kim, Dae-Nam;Kim, Kyo-Sun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.5
    • /
    • pp.50-60
    • /
    • 2010
  • For the last half a century, the personal computer and software industries have been prosperous due to the incessant evolution of computer systems. In the 21st century, the embedded system market has greatly increased as the market shifted to the mobile gadget field. While a lot of multimedia gadgets such as mobile phone, navigation system, PMP, etc. are pouring into the market, most industrial control systems still rely on 8-bit micro-controllers and simple application software techniques. Unfortunately, the technological barrier which requires additional investment and higher quality manpower to overcome, and the business risks which come from the uncertainty of the market growth and the competitiveness of the resulting products have prevented the companies in the industry from taking advantage of such fancy technologies. However, high performance, low-power and low-cost hardware and software platforms will enable their high-technology products to be developed and recognized by potential clients in the future. This paper presents such a platform for industrial embedded systems. The platform was designed based on Telechips TCC8300 multimedia processor which embedded a variety of parallel hardware for the implementation of multimedia functions. And open-source Embedded Linux, TinyX and GTK+ are used for implementation of GUI to minimize technology costs. In order to estimate the expected performance and power consumption, the performance improvement and the power consumption due to each of enabled hardware sub-systems including YUV2RGB frame converter are measured. An analytic model was devised to check the feasibility of a new application and trade off its performance and power consumption. The validity of the model has been confirmed by implementing a real target system. The cost can be further mitigated by using the hardware parts which are being used for mass production products mostly in the cell-phone market.