• 제목/요약/키워드: software similarity

검색결과 399건 처리시간 0.029초

절차지향 소프트웨어로부터 클래스와 상속성 추출 (Extraction of Classes and Hierarchy from Procedural Software)

  • 최정란;박성옥;이문근
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제28권9호
    • /
    • pp.612-628
    • /
    • 2001
  • 본 논문은 절차지향 소프트웨어로부터 클래스와 상속성을 추출하기 위한 방법론을 제안한다. 본 논문에서 제안한 방법론은 모든 경우의 객체 후보군으로부터 정의된 클래스 후보군과 그들의 상속성을 생성하여 클래스 후보군과 영역 모델 사이의 관계성과 유서 정도를 가지고 최고 또는 최적의 클래스 후보군을 선택하는데 초점을 둔다. 클래스와 상속성 추출 방법론은 다음과 같은 두드러진 특징을 가지고 있다. 정적(속성)과 동적(메소드)인 클러스터링 방법을 사용하고, 클래스 후보군의 경우는 추상화에 초점을 두며, m개의 클래스 후보군과 n개의 클래스 후보 사이의 상속 관계의 유사도 측정 즉, 2차원적 유사도 측정은 m개의 클래스 후보와 n개의 클래스 후보 사이의 전체 그룹에 대한 유사도를 구하는 수평적 측정과 클래스 후보군들에서 상속성을 가진 클래스의 집합과 영역 모델에서 같은 클래스 상속성을 가진 클래스 집합 사이의 유사도를 위한 수직적 측정방법이 있다. 이러한 방법론은 최고 또는 최적의 클래스 후보군을 선택하기 위해 제공학 전문가에게 광범위하고 통합적인 환경을 제시하고 있다.

  • PDF

교차 프로젝트 결함 예측을 위한 유사도 측정 기법 비교 연구 (A Comparative Study on Similarity Measure Techniques for Cross-Project Defect Prediction)

  • 류덕산;백종문
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권6호
    • /
    • pp.205-220
    • /
    • 2018
  • 소프트웨어 결함 예측은 결함이 자주 발생하는 모듈에 집중함으로써 소프트웨어 품질 보증 활동에 귀중한 프로젝트 리소스를 효과적으로 할당하는 데 도움이 될 수 있다. 회사 내에서 수집 된 충분한 기록 데이터를 사용하여 정확한 결함 발생 가능성이 높은 모듈 예측에 대해 WPDP (프로젝트 내 결함 예측)를 사용할 수 있다. 회사가 과거 데이터를 유지하지 못한 경우 CPDP (Cross-Project Defect Prediction) 메커니즘을 기반으로 오류를 예측하는 분류기를 만드는 것이 도움이 될 수 있다. CPDP는 다른 조직에서 수집 한 다른 프로젝트 데이터를 사용하여 분류기를 작성하기 때문에 정확한 분류기를 만드는데 가장 큰 장애물은 소스와 대상 프로젝트 간의 서로 다른 분포이다. 이 문제의 해결을 위해 효과적인 유사도 측정 기술을 식별하는 것이 중요하므로, 본 논문에서는 다양한 유사도 측정 기술을 CPDP 모델에 적용하여 성능을 비교한다. 유사도 가중치의 유효성을 평가하고, 통계적 유의성 검정 및 효과 크기 검정을 통해 결과를 검증한다. 실험 결과, k-Nearest Neighbor (k-NN), LOcal Correlation Integral (LOCI) 및 Range 방법이 유사도 측정 기술 중 상위 3 개에 속했고, 이들을 사용하는 CPDP 예측 성능이 WPDP의 성능과 유사하였다.

문장 및 어절 유사도를 이용한 표절 탐지 시스템 구현 (Implementation of A Plagiarism Detecting System with Sentence and Syntactic Word Similarities)

  • 맹주수;박지수;손진곤
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권3호
    • /
    • pp.109-114
    • /
    • 2019
  • 기존 표절 탐지 시스템은 형태소 분석을 기반으로 공통 단어의 빈도수를 이용해 문서의 유사도를 측정한다. 그러나 주제가 같아 유사 단어가 많이 쓰인 경우, 문장 단위로 일부만 발췌 표절한 경우, 그리고 조사와 어미의 유사성이 있는 경우는 공통 단어의 빈도수만으로는 정확한 유사도를 측정하는데 한계가 있다. 따라서 본 논문에서는 공통 단어 빈도수 기반의 유사도 측정 외에 문장 유사도와 어절 유사도를 추가적으로 측정해 유사도의 정확성을 높일 수 있는 표절 탐지 시스템을 설계하고 구현하였다. 실험 결과, 문장 유사도를 측정함으로써 문장 단위로 표절이 이루어진 경우를 발견할 수 있었고, 어절 유사도를 추가로 측정함으로써 부분표절이 일어난 경우라도 조사나 어미까지 그대로 사용한 표절의 경우 등을 발견할 수 있었다.

텍스타일 디자인 캐드 시스템의 색정리 기능에 대한 정량적 분석 연구 (A Study on the Color Functions of the Textile Design System based on CAD using Image Analysis Methods)

  • 최경미;김종준
    • 패션비즈니스
    • /
    • 제15권4호
    • /
    • pp.43-54
    • /
    • 2011
  • Printing process has been a major sector in the textile industries for a long period of time. With the advent of digital textile printing, the complex procedures of printing preparations and after-treatment processes have been streamlined. For the design of the motives of images to be printed, the use of image handling software, e.g. Photoshop(Adobe), has been of prime importance. Even though the software is extremely useful and functionally versatile, there are many laborious steps involved for the specific textile printing process. The use of a CAD-based textile printing function may help the textile printing process in streamlining the complex processing stages. The image qualities of the output designs have been compared objectively with the aid of several image similarity evaluation schemes including the SSIM, and FSIM Index methods.

Applying Topic Modeling and Similarity for Predicting Bug Severity in Cross Projects

  • Yang, Geunseok;Min, Kyeongsic;Lee, Jung-Won;Lee, Byungjeong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권3호
    • /
    • pp.1583-1598
    • /
    • 2019
  • Recently, software has increased in complexity and been applied in various industrial fields. As a result, the presence of software bugs cannot be avoided. Various bug severity prediction methodologies have been proposed, but their performance needs to be further improved. In this study, we propose a novel technique for bug severity prediction in cross projects such as Eclipse, Mozilla, WireShark, and Xamarin by using topic modeling and similarity (i.e., KL-divergence). First, we construct topic models from bug repositories in cross projects using Latent Dirichlet Allocation (LDA). Then, we find topics in each project that contain the most numerous similar bug reports by using a new bug report. Next, we extract the bug reports belonging to the selected topics and input them to a Naïve Bayes Multinomial (NBM) algorithm. Finally, we predict the bug severity in the new bug report. In order to evaluate the performance of our approach and to verify the difference between cross projects and single project, we compare it with the Naïve Bayes Multinomial approach; the Lamkanfi methodology, which is a well-known bug severity prediction approach; and an emotional similarity-based bug severity prediction approach. Our approach exhibits a better performance than the compared methods.

임베디드 시스템의 동일기능 소스코드 유사도 분석 요구사항 (Object Material Confirmation for Source Code Comparison on Embedded System)

  • 김도현;이규대
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제17권1호
    • /
    • pp.25-30
    • /
    • 2021
  • 임베디드 시스템 소스코드 감정목적물의 유사성을 판단하는 경우, 제공된 소스코드가 컴파일이 가능한 상태인지, 실행이 정상적으로 되는 것인지, 하드웨어와의 인터페이스가 일치하는지 등의 확인이 되지 않은 상태로 제공되는 경우가 지속적으로 발생하고 있다. 분쟁을 제기하는 측에서는 동작의 특성이 유사하고, 나타나는 기능의 효과가 유사한 이유로 소스코드의 많은 부분이 유사할 것으로 판단하고, 감정을 요청하게 되지만, 위의 여러 가지 상황으로 유사성 분석 결과가 기대와 다르게 나타나는 가능성이 우려된다. 본 연구에서는 감정사례를 통해 소스코드의 분석 과정과 검증되지 않은 소스코드의 유사성 도출의 개선방향을 제시한다.

An Inference Similarity-based Federated Learning Framework for Enhancing Collaborative Perception in Autonomous Driving

  • Zilong Jin;Chi Zhang;Lejun Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권5호
    • /
    • pp.1223-1237
    • /
    • 2024
  • Autonomous vehicles use onboard sensors to sense the surrounding environment. In complex autonomous driving scenarios, the detection and recognition capabilities are constrained, which may result in serious accidents. An efficient way to enhance the detection and recognition capabilities is establishing collaborations with the neighbor vehicles. However, the collaborations introduce additional challenges in terms of the data heterogeneity, communication cost, and data privacy. In this paper, a novel personalized federated learning framework is proposed for addressing the challenges and enabling efficient collaborations in autonomous driving environment. For obtaining a global model, vehicles perform local training and transmit logits to a central unit instead of the entire model, and thus the communication cost is minimized, and the data privacy is protected. Then, the inference similarity is derived for capturing the characteristics of data heterogeneity. The vehicles are divided into clusters based on the inference similarity and a weighted aggregation is performed within a cluster. Finally, the vehicles download the corresponding aggregated global model and train a personalized model which is personalized for the cluster that has similar data distribution, so that accuracy is not affected by heterogeneous data. Experimental results demonstrate significant advantages of our proposed method in improving the efficiency of collaborative perception and reducing communication cost.

서로 다른 버전의 동일 오픈소스 함수 간 효율적인 유사도 분석 기법 (Efficient Similarity Analysis Methods for Same Open Source Functions in Different Versions)

  • 김영철;조은선
    • 정보과학회 논문지
    • /
    • 제44권10호
    • /
    • pp.1019-1025
    • /
    • 2017
  • 바이너리 유사도 분석은 취약점 분석, 악성코드 분석, 표절 탐지 등에서 사용되고 있는데, 분석대상 함수가 알려진 안전한 함수와 동일하다는 것을 증명해주면 바이너리 코드의 악성행위 분석, 취약점 분석 등의 효율성을 높이는 데에 도움이 될 수 있다. 하지만 기존에는 동일 함수의 서로 다른 버전에 대한 유사도 분석에 대해서 별도로 이루어진 연구가 거의 없었다. 본 논문에서는 바이너리로부터 추출 가능한 함수 정보들을 바탕으로 다양한 방법을 통해 함수 단위의 유사도를 분석하고 적은 시간으로 효율적으로 분석할 수 있는 방안을 모색한다. 특히 OpenSSL 라이브러리의 서로 다른 버전을 대상으로 분석을 수행하여 버전이 다른 경우에도 유사한 함수를 탐지하는 것을 확인한다.

사용자 유사도 기반 경로 예측 기법 (User Similarity-based Path Prediction Method)

  • 남수민;이석훈
    • 한국정보기술학회논문지
    • /
    • 제17권12호
    • /
    • pp.29-38
    • /
    • 2019
  • 라이프로그를 이용한 경로 예측 기법은 정확한 경로 예측을 위하여 많은 양의 학습 데이터를 요구하며, 학습 데이터가 부족할 경우 경로 예측 성능이 저하된다. 학습 데이터 부족은 사용자의 이동 패턴이 유사한 다른 사용자의 데이터를 이용하여 해결이 가능하다. 따라서 이 논문은 사용자 유사도 기반 경로 예측 알고리즘을 제안한다. 이를 위하여 제안 알고리즘은 경로를 3단 그리드 패턴으로 학습하고 코사인 유사도 기법을 이용하여 사용자 간 유사도를 측정한다. 이후, 측정된 유사도를 학습된 모델에 적용하여 경로를 예측한다. 평가를 위하여 기존 경로 예측 기법들과 제안 기법의 경로 예측 정확도를 측정 및 비교한다. 그 결과, 제안 기법의 정확도는 66.6%로 다른 기법들에 비해 평균 1.8% 더 높은 정확도를 가진 것으로 평가된다.

A Estimation of Software Development Effort for Distributed Control System by ANFIS

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.375-375
    • /
    • 2000
  • Estimating software development effort remains a complex problem attracting considerable research attention. Improving the estimation techniques available to project managers would facilitate more effective control of time and budgets in software development as well as market. However, estimation is difficult because of its similarity to export judgment approaches and fur its potential as an expert assistant in support of human judgment. Especially, in software development for DCS (Distributed Control System), because of infrastructure software related to target-machines hardware and process characteristics should be considered, estimating software development effort is more complex. This paper suggests software development effort estimation technique using neural network. The methods considered are based on COCOMO and case-based projects. Estimation results applied to case-based project appeared to have value fur software development effort estimation models.

  • PDF