• 제목/요약/키워드: software library

검색결과 507건 처리시간 0.025초

Position of Hungarian Merino among other Merinos, within-breed genetic similarity network and markers associated with daily weight gain

  • Attila, Zsolnai;Istvan, Egerszegi;Laszlo, Rozsa;David, Mezoszentgyorgyi;Istvan, Anton
    • Animal Bioscience
    • /
    • 제36권1호
    • /
    • pp.10-18
    • /
    • 2023
  • Objective: In this study, we aimed to position the Hungarian Merino among other Merinoderived sheep breeds, explore the characteristics of our sampled animals' genetic similarity network within the breed, and highlight single nucleotide polymorphisms (SNPs) associated with daily weight-gain. Methods: Hungarian Merino (n = 138) was genotyped on Ovine SNP50 Bead Chip (Illumina, San Diego, CA, USA) and positioned among 30 Merino and Merino-derived breeds (n = 555). Population characteristics were obtained via PLINK, SVS, Admixture, and Treemix software, within-breed network was analysed with python networkx 2.3 library. Daily weight gain of Hungarian Merino was standardised to 60 days and was collected from the database of the Association of Hungarian Sheep and Goat Breeders. For the identification of loci associated with daily weight gain, a multi-locus mixed-model was used. Results: Supporting the breed's written history, the closest breeds to Hungarian Merino were Estremadura and Rambouillet (pairwise FST values are 0.035 and 0.036, respectively). Among Hungarian Merino, a highly centralised connectedness has been revealed by network analysis of pairwise values of identity-by-state, where the animal in the central node had a betweenness centrality value equal to 0.936. Probing of daily weight gain against the SNP data of Hungarian Merinos revealed five associated loci. Two of them, OAR8_17854216.1 and s42441.1 on chromosome 8 and 9 (-log10P>22, false discovery rate<5.5e-20) and one locus on chromosome 20, s28948.1 (-log10P = 13.46, false discovery rate = 4.1e-11), were close to the markers reported in other breeds concerning daily weight gain, six-month weight, and post-weaning gain. Conclusion: The position of Hungarian Merino among other Merino breeds has been determined. We have described the similarity network of the individuals to be applied in breeding practices and highlighted several markers useful for elevating the daily weight gain of Hungarian Merino.

뇌성마비 아동에게 시지각 중재가 미치는 효과에 대한 체계적 고찰 (A Systematic Review of the Effects of Visual Perception Interventions for Children With Cerebral Palsy)

  • 하예나;채송은;정미연;유은영
    • 재활치료과학
    • /
    • 제12권2호
    • /
    • pp.55-68
    • /
    • 2023
  • 목적 : 본 연구는 뇌성마비 아동에게 시지각 중재를 적용한 연구들에 대해 체계적으로 고찰하여, 시지각중재의 효과에 대해 분석하고자 한다. 연구방법 : 데이터 베이스는 PubMed, EMbase, Science Direct, ProQuest, Koreanstudies Information Service System (KISS), Research Information Sharing Service (RISS), 국회도서관을 사용하였다. 키워드는 뇌성마비, 시지각, cerebral palsy, CP, visual perception을 사용하였다. PRISMA Flowchart에 따라 2012년 1월 1일부터 2022년 3월 30일까지 게재된 연구 중에서 10편을 선정하였다. 선정된 연구들의 질적 수준, 연구 대상자의 인구학적 특성, 중재의 효과, 중재의 영역과 전략, 중재의 효과를 측정하기 위한 평가도구, 비뚤림 위험에 대해 분석하였다. 결과 : 선정된 모든 연구에서 시지각 중재가 시지각 기능 증진에 효과적임을 확인하였다. 또한 시지각중재는 시지각 기능뿐만 아니라 상지기능, 일상생활활동, 자세조절, 목표달성, 심리사회 영역에서도 긍정적인 결과를 나타냈다. 눈-손 협응 영역은 모든 연구에서 중재되었다. 결론 : 시지각 중재 시 시지각 기능을 영역별로 평가하고, 개인별 체계적으로 단계화된 맞춤 중재를 적용해야 한다.

위암 수술 후 항암치료를 병행한 한의치료의 유효성 및 안전성: 체계적 문헌고찰 및 메타분석 프로토콜 (Efficacy and Safety of Combination Treatment of Traditional Korean Medicine after Gastric Cancer Surgery: A Systematic Review and Meta-analysis Protocol)

  • 김종희;곽은빈;박소정;김동현;김수담;박지혜;유화승
    • 대한한의학방제학회지
    • /
    • 제31권4호
    • /
    • pp.361-371
    • /
    • 2023
  • Objectives : Gastric cancer is a malignant tumor of the digestive tract that not only has a high mortality rate, but also affects quality of life. In Traditional Korean Medicine, acupuncture and herbal medicines can increase the survival rate for Gastric cancer and improve the quality of life. Traditional Korean Medicine treatment played an important role when used alone or in combination with chemotherapy. However, there is still insufficient evidence to support the efficacy and safety of Traditional Korean Medicine in patients undergoing chemotherapy after surgery. Therefore, the purpose of this study is to systematically evaluate the effect of oriental medicine treatment on patients as a complementary therapy for Gastric cancer. Methods : 2 researchers will search using EMBASE, Pubmed, CNKI, Cochrane Library, CiNii, KMBASE, KISS, OASIS, RISS, ScienceON. The search period of the database is from inception until June 2022. This study will include a randomized controlled trial of GC for acupuncture and herbal treatment. Primary outcomes include anti-cancer effects. Secondary outcomes evaluate survival rates and improvements in quality of life. The data uses Review Manager Software 5.4. Results : This study will provide a systematic evaluation by synthesizing the anti-cancer effect, survival rate and quality of life of Gastric cancer when Traditional Korean Medicine is combined with chemotherapy. Conclusion : The conclusion of this study will provide a basis for determining whether Traditional Korean Medicine treatment for Gastric cancer treatment is an effective and safe treatment method in clinical practice.

인공지능(AI) 모델을 사용한 차나무 잎의 병해 분류 (Tea Leaf Disease Classification Using Artificial Intelligence (AI) Models)

  • 피우미 사우미야 쿠마라테나;조영열
    • 생물환경조절학회지
    • /
    • 제33권1호
    • /
    • pp.1-11
    • /
    • 2024
  • 이 연구에서는 Inception V3, SqueezeNet(local), VGG-16, Painters 및 DeepLoc의 다섯 가지 인공지능(AI) 모델을 사용하여 차나무 잎의 병해를 분류하였다. 여덟 가지 이미지 카테고리를 사용하였는데, healthy, algal leaf spot, anthracnose, bird's eye spot, brown blight, gray blight, red leaf spot, and white spot였다. 이 연구에서 사용한 소프트웨어는 데이터 시각적 프로그래밍을 위한 파이썬 라이브러리로 작동하는 Orange3였다. 이는 데이터를 시각적으로 조작하여 분석하기 위한 워크플로를 생성하는 인터페이스를 통해 작동되었다. 각 AI 모델의 정확도로 최적의 AI 모델을 선택하였다. 모든 모델은 Adam 최적화, ReLU 활성화 함수, 은닉 레이어에 100개의 뉴런, 신경망의 최대 반복 횟수가 200회, 그리고 0.0001 정규화를 사용하여 훈련되었다. Orange3 기능을 확장하기 위해 새로운 이미지 분석 Add-on을 설치하였다. 훈련 모델에서는 이미지 가져오기(import image), 이미지 임베딩(image embedding), 신경망(neural network), 테스트 및 점수(test and score), 혼동 행렬(confusion matrix) 위젯이 사용되었으며, 예측에는 이미지 가져오기(import image), 이미지 임베딩(image embedding), 예측(prediction) 및 이미지 뷰어(image viewer) 위젯이 사용되었다. 다섯 AI 모델[Inception V3, SqueezeNet(로컬), VGG-16, Painters 및 DeepLoc]의 신경망 정밀도는 각각 0.807, 0.901, 0.780, 0.800 및 0.771이었다. 결론적으로 SqueezeNet(local) 모델이 차나무 잎 이미지를 사용하여 차병해 탐색을 위한 최적 AI 모델로 선택되었으며, 정확도와 혼동 행렬을 통해 뛰어난 성능을 보였다.

딥러닝 프레임워크의 비교: 티아노, 텐서플로, CNTK를 중심으로 (Comparison of Deep Learning Frameworks: About Theano, Tensorflow, and Cognitive Toolkit)

  • 정여진;안성만;양지헌;이재준
    • 지능정보연구
    • /
    • 제23권2호
    • /
    • pp.1-17
    • /
    • 2017
  • 딥러닝 프레임워크의 대표적인 기능으로는 '자동미분'과 'GPU의 활용' 등을 들 수 있다. 본 논문은 파이썬의 라이브러리 형태로 사용 가능한 프레임워크 중에서 구글의 텐서플로와 마이크로소프트의 CNTK, 그리고 텐서플로의 원조라고 할 수 있는 티아노를 비교하였다. 본문에서는 자동미분의 개념과 GPU의 활용형태를 간단히 설명하고, 그 다음에 logistic regression을 실행하는 예를 통하여 각 프레임워크의 문법을 알아본 뒤에, 마지막으로 대표적인 딥러닝 응용인 CNN의 예제를 실행시켜보고 코딩의 편의성과 실행속도 등을 확인해 보았다. 그 결과, 편의성의 관점에서 보면 티아노가 가장 코딩 하기가 어렵고, CNTK와 텐서플로는 많은 부분이 비슷하게 추상화 되어 있어서 코딩이 비슷하지만 가중치와 편향을 직접 정의하느냐의 여부에서 차이를 보였다. 그리고 각 프레임워크의 실행속도에 대한 평가는 '큰 차이는 없다'는 것이다. 텐서플로는 티아노에 비하여 속도가 느리다는 평가가 있어왔는데, 본 연구의 실험에 의하면, 비록 CNN 모형에 국한되었지만, 텐서플로가 아주 조금이지만 빠른 것으로 나타났다. CNTK의 경우에도, 비록 실험환경이 달랐지만, 실험환경의 차이에 의한 속도의 차이의 편차범위 이내에 있는 것으로 판단이 되었다. 본 연구에서는 세 종류의 딥러닝 프레임워크만을 살펴보았는데, 위키피디아에 따르면 딥러닝 프레임워크의 종류는 12가지가 있으며, 각 프레임워크의 특징을 15가지 속성으로 구분하여 차이를 특정하고 있다. 그 많은 속성 중에서 사용자의 입장에서 볼 때 중요한 속성은 어떤 언어(파이썬, C++, Java, 등)로 사용가능한지, 어떤 딥러닝 모형에 대한 라이브러리가 잘 구현되어 있는지 등일 것이다. 그리고 사용자가 대규모의 딥러닝 모형을 구축한다면, 다중 GPU 혹은 다중 서버를 지원하는지의 여부도 중요할 것이다. 또한 딥러닝 모형을 처음 학습하는 경우에는 사용설명서가 많은지 예제 프로그램이 많은지 여부도 중요한 기준이 될 것이다.

텍스트 마이닝을 활용한 신문사에 따른 내용 및 논조 차이점 분석 (A Study on Differences of Contents and Tones of Arguments among Newspapers Using Text Mining Analysis)

  • 감미아;송민
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.53-77
    • /
    • 2012
  • 본 연구는 경향신문, 한겨레, 동아일보 세 개의 신문기사가 가지고 있는 내용 및 논조에 어떠한 차이가 있는지를 객관적인 데이터를 통해 제시하고자 시행되었다. 본 연구는 텍스트 마이닝 기법을 활용하여 신문기사의 키워드 단순빈도 분석과 Clustering, Classification 결과를 분석하여 제시하였으며, 경제, 문화 국제, 사회, 정치 및 사설 분야에서의 신문사 간 차이점을 분석하고자 하였다. 신문기사의 문단을 분석단위로 하여 각 신문사의 특성을 파악하였고, 키워드 네트워크로 키워드들 간의 관계를 시각화하여 신문사별 특성을 객관적으로 볼 수 있도록 제시하였다. 신문기사의 수집은 신문기사 데이터베이스 시스템인 KINDS에서 2008년부터 2012년까지 해당 주제로 주제어 검색을 하여 총 3,026개의 수집을 하였다. 수집된 신문기사들은 불용어 제거와 형태소 분석을 위해 Java로 구현된 Lucene Korean 모듈을 이용하여 자연어 처리를 하였다. 신문기사의 내용 및 논조를 파악하기 위해 경향신문, 한겨레, 동아일보가 정해진 기간 내에 일어난 특정 사건에 대해 언급하는 단어의 빈도 상위 10위를 제시하여 분석하였고, 키워드들 간 코사인 유사도를 분석하여 네트워크 지도를 만들었으며 단어들의 네트워크를 통해 Clustering 결과를 분석하였다. 신문사들마다의 논조를 확인하기 위해 Supervised Learning 기법을 활용하여 각각의 논조에 대해 분류하였으며, 마지막으로는 분류 성능 평가를 위해 정확률과 재현률, F-value를 측정하여 제시하였다. 본 연구를 통해 문화 전반, 경제 전반, 정치분야의 통합진보당 이슈에 대한 신문기사들에 전반적인 내용과 논조에 차이를 보이고 있음을 알 수 있었고, 사회분야의 4대강 사업에 대한 긍정-부정 논조에 차이가 있음을 발견할 수 있었다. 본 연구는 지금까지 연구되어왔던 한글 신문기사의 코딩 및 담화분석 방법에서 벗어나, 텍스트 마이닝 기법을 활용하여 다량의 데이터를 분석하였음에 의미가 있다. 향후 지속적인 연구를 통해 분류 성능을 보다 높인다면, 사람들이 뉴스를 접할 때 그 뉴스의 특정 논조 성향에 대해 우선적으로 파악하여 객관성을 유지한 채 정보에 접근할 수 있도록 도와주는 신뢰성 있는 툴을 만들 수 있을 것이라 기대한다.

소셜미디어 콘텐츠의 오피니언 마이닝결과 시각화: N라면 사례 분석 연구 (Visualizing the Results of Opinion Mining from Social Media Contents: Case Study of a Noodle Company)

  • 김유신;권도영;정승렬
    • 지능정보연구
    • /
    • 제20권4호
    • /
    • pp.89-105
    • /
    • 2014
  • Web2.0의 등장과 함께 급속히 발전해온 온라인 포럼, 블로그, 트위터, 페이스북과 같은 소셜 미디어 서비스는 소비자와 소비자간의 의사소통을 넘어 이제 기업과 소비자 사이의 새로운 커뮤니케이션 매체로도 인식되고 있다. 때문에 기업뿐만 아니라 수많은 기관, 조직 등에서도 소셜미디어를 활용하여 소비자와 적극적인 의사소통을 전개하고 있으며, 나아가 소셜 미디어 콘텐츠에 담겨있는 소비자 고객들의 의견, 관심, 불만, 평판 등을 분석하고 이해하며 비즈니스에 적용하기 위해 이를 적극 분석하는 단계로 진화하고 있다. 이러한 연구의 한 분야로서 비정형 텍스트 콘텐츠와 같은 빅 데이터에서 저자의 감성이나 의견 등을 추출하는 오피니언 마이닝과 감성분석 기법이 소셜미디어 콘텐츠 분석에도 활발히 이용되고 있으며, 이미 여러 연구에서 이를 위한 방법론, 테크닉, 툴 등을 제시하고 있다. 그러나 아직 대량의 소셜미디어 데이터를 수집하여 언어처리를 거치고 의미를 해석하여 비즈니스 인사이트를 도출하는 전반의 과정을 제시한 연구가 많지 않으며, 그 결과를 의사결정자들이 쉽게 이해할 수 있는 시각화 기법으로 풀어내는 것 또한 드문 실정이다. 그러므로 본 연구에서는 소셜미디어 콘텐츠의 오피니언 마이닝을 위한 실무적인 분석방법을 제시하고 이를 통해 기업의사결정을 지원할 수 있는 시각화된 결과물을 제시하고자 하였다. 이를 위해 한국 인스턴트 식품 1위 기업의 대표 상품인 N-라면을 사례 연구의 대상으로 실제 블로그 데이터와 뉴스를 수집/분석하고 결과를 도출하였다. 또한 이런 과정에서 프리웨어 오픈 소스 R을 이용함으로써 비용부담 없이 어떤 조직에서도 적용할 수 있는 레퍼런스를 구현하였다. 그러므로 저자들은 본 연구의 분석방법과 결과물들이 식품산업뿐만 아니라 타 산업에서도 바로 적용 가능한 실용적 가이드와 참조자료가 될 것으로 기대한다.