• Title, Summary, Keyword: software engineering

Search Result 10,571, Processing Time 0.06 seconds

Evaluation on the Relationship between Software Engineering Level and Schedule Deviation in Software Development (SW 공학수준과 SW 프로젝트 납기성과와의 관계)

  • Kim, Seung-Gweon;Ko, Byung-Sun
    • Journal of Information Technology Services
    • /
    • v.10 no.4
    • /
    • pp.191-204
    • /
    • 2011
  • Recently, many software companies are trying to improve the software quality and project outcome with more costs and efforts in development time. In the software convergence and integration environments, it is required efforts to gain high quality of software. In other words, it is required to utilize software engineering knowledge and technology for higher software quality and better software project productivity. The Software development productivity can be varied by software process capability according to building a framework for software development, selection and use of appropriate technology, human resource management. Software process capability will influence software project outcome which is the general opinion. This study provides empirical evidence about software engineering efforts and investment approach to lead software project performance. We measured the software engineering efforts by SW engineering level and analyzed the corelation between software engineering level and schedule deviation. And, we verified that this performance is affected by the size of software company. As a result, software process capability is important to build a infrastructure and develop systematically software project. The higher software engineering level can lead to improved software project performance.

Best Practice on Software Traceability Environment based on PaaS Cloud Service

  • Jang, Woo Sung;Kim, Janghwan;Kim, R. Young Chul
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.149-155
    • /
    • 2020
  • In the software industry of Korean Small and Medium-sized Enterprise(SME)s, the development process is often not mature. This may lead to failures in quality control and output management. As a result, the quality of the software can be degraded. To solve the problem, the software visualization technique, which is from the National IT Industry Promotion Agency Software Engineering Center can be applied. We have experienced with mentoring not only the visualization of software development process, but also various visualization process of SMEs. However, the existing software visualization method was difficult to install environment and its time cost was high. This paper proposes a software visualization environment through a cloud service along with a case of building a software visualization environment. We expect that this method will make it easier to build a visualization environment and improve the quality of SME software.

A Study on the Software Test Case Development using Systems Engineering Methodology (시스템엔지니어링 방법론을 적용한 소프트웨어 테스트 케이스 개발에 관한 연구)

  • Salim, Shelly;Shin, Junguk;Kim, Jinil
    • Journal of the Korea Society of Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.83-88
    • /
    • 2018
  • Software has become an integral part of almost any system, triggered by the ever-growing demand for automation and artificial intelligent throughout engineering domains. The complexities of software-centric systems are also increasing, which make software test efforts become essential in software development projects. In this study, we applied systems engineering methodology in generating software test cases. We found out the similarities between requirements analysis and traceability concept of systems engineering and test specification contents of software test. In terms of acceptance test, software test cases could be considered as validation requirements. We also suggested a method to determine test order using a SysML modeling tool.

Software Reliability of Safety Critical FPGA-based System using System Engineering Approach

  • Pradana, Satrio;Jung, Jae Cheon
    • Journal of the Korea Society of Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.49-57
    • /
    • 2018
  • The main objective of this paper is come up with methodology approach for FPGA-based system in verification and validation lifecycle regarding software reliability using system engineering approach. The steps of both reverse engineering and re-engineering are carried out to implement an FPGA-based of safety critical system in Nuclear Power Plant. The reverse engineering methodology is applied to elicit the requirements of the system as well as gain understanding of the current life cycle and V&V activities of FPGA based-system. The re-engineering method is carried out to get a new methodology approach of software reliability, particularly Software Reliability Growth Model. For measure the software reliability of a given FPGA-based system, the following steps are executed as; requirements definition and measurement, evaluation of candidate reliability model, and the validation of the selected system. As conclusion, a new methodology approach for software reliability measurement using software reliability growth model is developed.

Design and Implementation of Web-based Software Engineering Tool for Robot (웹 기반 로봇 소프트웨어 공학 도구 설계 및 구현)

  • Hong, Chang-Ho;Park, Hong-Seong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.908-915
    • /
    • 2011
  • As the requirement of user for robot functionality, the function and interface for controlling the robot system is more sophisticated and complicated. Accordingly development process of robot is more complicated and it takes much longer time to develop a robot system. Software development using project management tool is more important in software engineering because of the complexity of software, especially robot system. This paper proposes SEED (Software Engineering Equipment for Development), which is a web-based and integrated software engineering tool to provide independent tools for robot software development. SEED includes the document management tool, the software configuration management tool, the software testing tool on developing robot software and provide a functionality of collaborated and remote development due to WEB-based operations.

Machine Learning Frameworks for Automated Software Testing Tools : A Study

  • Kim, Jungho;Ryu, Joung Woo;Shin, Hyun-Jeong;Song, Jin-Hee
    • International Journal of Contents
    • /
    • v.13 no.1
    • /
    • pp.38-44
    • /
    • 2017
  • Increased use of software and complexity of software functions, as well as shortened software quality evaluation periods, have increased the importance and necessity for automation of software testing. Automating software testing by using machine learning not only minimizes errors in manual testing, but also allows a speedier evaluation. Research on machine learning in automated software testing has so far focused on solving special problems with algorithms, leading to difficulties for the software developers and testers, in applying machine learning to software testing automation. This paper, proposes a new machine learning framework for software testing automation through related studies. To maximize the performance of software testing, we analyzed and categorized the machine learning algorithms applicable to each software test phase, including the diverse data that can be used in the algorithms. We believe that our framework allows software developers or testers to choose a machine learning algorithm suitable for their purpose.

Software Climate Change and its Disruptive Weather: A Potential Shift from "Software Engineering" to Vibrant/Dynamic Softology

  • Ghani, Imran;Jeong, Seung Ryul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3925-3942
    • /
    • 2016
  • Like natural climate change on the planet earth, the climate in software development environments is also changing (fast). Like the natural weather, the software environment is also disruptive. As the climate experts alert and suggest taking necessary measures to overcome certain challenges to make this earth a safer and comfortable living place, likewise this article also alerts the relevant stakeholders of software craftsmanship about the dynamic challenges that traditional Software Engineering (SE) with purely "Engineering mind-set" is not capable to respond. Hence, some new thoughts to overcome such challenges are shared. Fundamentally, based on the historical evidences, this article presents the authors' observation about continuous shift from traditional "Engineering-based" software development approaches to disruptive approaches - "Vibrant Softology". The authors see the cause of this shift as disruptive transformational force, which is so powerful that it is uncontrollably diminishing the "Engineering-based" approach from software development environments. The authors align it with climate change analogy. Based on this analogy, the authors feel the need to theoretically re-coin the notion of SE to some new term; perhaps Vibrant/Dynamic Softology (VS or DS). Hence, the authors suggest "a new (disruptive and dynamic) way of thinking is required to develop software". It is worth mentioning that the purpose of article and this new theory is not to disparage the notion of software engineering altogether, rather the aim is to highlight the importance of transformation from SE to its next level (perhaps VS/DS) due to the emerging needs in the software craftsmanship environment.

Dynamic Software Component Composition Based On Aspect-Oriented Programming (관점지향 프로그램 기반의 동적 소프트웨어 컴포넌트 조합 패턴)

  • Bae, Sung-Moon;Park, Chul-Soon;Park, Chun-Ho
    • Journal of the Society of Korea Industrial and Systems Engineering
    • /
    • v.31 no.4
    • /
    • pp.100-105
    • /
    • 2008
  • Cost reduction, time to market, and quality improvement of software product are critical issues to the software companies which try to survive in recent competitive market environments. Software Product Line Engineering (SPLE) is one of the approaches to address these issues. The goal of software product line is to maximize the software reuse and achieve the best productivity with the minimum cost. In software product line, software components are classified into the common and variable modules for composition work. In this paper, we proposed a dynamic composition process based on aspect-oriented programming methodology in which software requirements are classified into the core-concerns and cross-cutting concerns, and then assembled into the final software product. It enables developers to concentrate on the core logics of given problem, not the side-issues of software product such as transactions and logging. We also proposed useful composition patterns based on aspect oriented programming paradigm. Finally, we implemented a prototype of the proposed process using Java and Aspect to show the proposed approach's feasibility. The scenario of the prototype is based on the embedded analysis software of telecommunication devices.

NuSEE: AN INTEGRATED ENVIRONMENT OF SOFTWARE SPECIFICATION AND V&V FOR PLC BASED SAFETYCRITICAL SYSTEMS

  • Koo, Seo-Ryong;Seong, Poong-Hyun;Yoo, Jun-Beom;Cha, Sung-Deok;Youn, Cheong;Han, Hyun-Chul
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.259-276
    • /
    • 2006
  • As the use of digital systems becomes more prevalent, adequate techniques for software specification and analysis have become increasingly important in nuclear power plant (NPP) safety-critical systems. Additionally, the importance of software verification and validation (V&V) based on adequate specification has received greater emphasis in view of improving software quality. For thorough V&V of safety-critical systems, V&V should be performed throughout the software lifecycle. However, systematic V&V is difficult as it involves many manual-oriented tasks. Tool support is needed in order to more conveniently perform software V&V. In response, we developed four kinds of computer aided software engineering (CASE) tools to support system specification for a formal-based analysis according to the software lifecycle. In this work, we achieved optimized integration of each tool. The toolset, NuSEE, is an integrated environment for software specification and V&V for PLC based safety-critical systems. In accordance with the software lifecycle, NuSEE consists of NuSISRT for the concept phase, NuSRS for the requirements phase, NuSDS for the design phase and NuSCM for configuration management. It is believed that after further development our integrated environment will be a unique and promising software specification and analysis toolset that will support the entire software lifecycle for the development of PLC based NPP safety-critical systems.

Runtime Software Monitoring Based on Binary Code Translation for Real-Time Software

  • Choi, Kiho;Kim, Seongseop;Park, Daejin;Cho, Jeonghun
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1462-1471
    • /
    • 2019
  • Real-time embedded systems have become pervasive in general industry. They also began to be applied in such domains as avionics, automotive, aerospace, healthcare, and industrial Internet. However, the system failure of such domains could result in catastrophic consequences. Runtime software testing is required in such domains that demands very high accuracy. Traditional runtime software testing based on handwork is very inefficient and time consuming. Hence, test automation methodologies in runtime is demanding. In this paper, we introduce a software testing system that translates a real-time software into a monitorable real-time software. The monitorable real-time software means the software provides the monitoring information in runtime. The monitoring target are time constraints of the input real-time software. We anticipate that our system lessens the burden of runtime software testing.