• Title/Summary/Keyword: software development cost

Search Result 766, Processing Time 0.026 seconds

An Electric Load Forecasting Scheme with High Time Resolution Based on Artificial Neural Network (인공 신경망 기반의 고시간 해상도를 갖는 전력수요 예측기법)

  • Park, Jinwoong;Moon, Jihoon;Hwang, Eenjun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.11
    • /
    • pp.527-536
    • /
    • 2017
  • With the recent development of smart grid industry, the necessity for efficient EMS(Energy Management System) has been increased. In particular, in order to reduce electric load and energy cost, sophisticated electric load forecasting and efficient smart grid operation strategy are required. In this paper, for more accurate electric load forecasting, we extend the data collected at demand time into high time resolution and construct an artificial neural network-based forecasting model appropriate for the high time resolution data. Furthermore, to improve the accuracy of electric load forecasting, time series data of sequence form are transformed into continuous data of two-dimensional space to solve that problem that machine learning methods cannot reflect the periodicity of time series data. In addition, to consider external factors such as temperature and humidity in accordance with the time resolution, we estimate their value at the time resolution using linear interpolation method. Finally, we apply the PCA(Principal Component Analysis) algorithm to the feature vector composed of external factors to remove data which have little correlation with the power data. Finally, we perform the evaluation of our model through 5-fold cross-validation. The results show that forecasting based on higher time resolution improve the accuracy and the best error rate of 3.71% was achieved at the 3-min resolution.

Software Architecture for Implementing the Grid Computing of the High Availability Solution through Load Balancing (고가용성 솔루션 구축을 위한 그리드 측면에서의 소프트웨어 아키텍처를 통한 로드밸랜싱 구현)

  • Lee, Byoung-Yup;Park, Jun-Ho;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.3
    • /
    • pp.26-35
    • /
    • 2011
  • In these days, internet environment are very quickly development as well on-line service have been using a online for the mission critical business around the world. As the amount of information to be processed by computers has recently been increased there has been cluster computing systems developed by connecting workstations server using high speed networks for high availability. but cluster computing technology are limited for a lot of IT resources. So, grid computing is an expanded technology of distributed computing technology to use low-cost and high-performance computing power in various fields. Although the purpose of Grid computing focuses on large-scale resource sharing, innovative applications, and in some case, high-performance orientation, it has been used as conventional distributed computing environment like clustered computer until now because grid middleware does not have common sharable information system. In order to use grid computing environment efficiently which consists of various grid middleware, it is necessary to have application-independent information system which can share information description and services, and expand them easily. This paper proposed new database architecture and load balancing for high availability through Grid technology.

Outside Temperature Prediction Based on Artificial Neural Network for Estimating the Heating Load in Greenhouse (인공신경망 기반 온실 외부 온도 예측을 통한 난방부하 추정)

  • Kim, Sang Yeob;Park, Kyoung Sub;Ryu, Keun Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.4
    • /
    • pp.129-134
    • /
    • 2018
  • Recently, the artificial neural network (ANN) model is a promising technique in the prediction, numerical control, robot control and pattern recognition. We predicted the outside temperature of greenhouse using ANN and utilized the model in greenhouse control. The performance of ANN model was evaluated and compared with multiple regression model(MRM) and support vector machine (SVM) model. The 10-fold cross validation was used as the evaluation method. In order to improve the prediction performance, the data reduction was performed by correlation analysis and new factor were extracted from measured data to improve the reliability of training data. The backpropagation algorithm was used for constructing ANN, multiple regression model was constructed by M5 method. And SVM model was constructed by epsilon-SVM method. As the result showed that the RMSE (Root Mean Squared Error) value of ANN, MRM and SVM were 0.9256, 1.8503 and 7.5521 respectively. In addition, by applying the prediction model to greenhouse heating load calculation, it can increase the income by reducing the energy cost in the greenhouse. The heating load of the experimented greenhouse was 3326.4kcal/h and the fuel consumption was estimated to be 453.8L as the total heating time is $10000^{\circ}C/h$. Therefore, data mining technology of ANN can be applied to various agricultural fields such as precise greenhouse control, cultivation techniques, and harvest prediction, thereby contributing to the development of smart agriculture.

Development of a Moving Monitor System for Growing Crops and Environmental Information in Green House (시설하우스 이동형 환경 및 생장 모니터링 시스템 개발)

  • Kim, Ho-Joon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.3
    • /
    • pp.285-290
    • /
    • 2016
  • In rural area, our farmers confront decreasing benefits owing to imported crops and increased cost. Recently, the government encourage the 6th Industry that merges farming, rural resources, and information and communication technology. Therefor the government makes an investment in supplying 'smart greenhouse' in which a farmer monitor growing crops and environment information to control growing condition. The objective of this study is developing an Moving Monitor and Control System for crops in green House. This system includes a movable sensing unit, a controlling unit, and a server PC unit. The movable sensing unit contains high resolution IP camera, temperature and humidity sensor and WiFi repeater. It rolls on a rail hanging beneath the ceiling of a green house. The controlling unit contains embedded PC, PLC module, WiFi router, and BLDC motor to drive the movable sensing unit. And the server PC unit contains a integrated farm management software and home pages and databases in which the images of crops and environment informations. The movable sensing unit moves widely in a green house and gathers lots of information. The server saves these informations and provides them to customers with the direct commercing web page. This system will help farmers to control house environment and sales their crops in online market. Eventually It will be helpful for farmers to increase their benefits.

Development of a Simulation Prediction System Using Statistical Machine Learning Techniques (통계적 기계학습 기술을 이용한 시뮬레이션 결과 예측 시스템 개발)

  • Lee, Ki Yong;Shin, YoonJae;Choe, YeonJeong;Kim, SeonJeong;Suh, Young-Kyoon;Sa, Jeong Hwan;Lee, JongSuk Luth;Cho, Kum Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.593-606
    • /
    • 2016
  • Computer simulation is widely used in a variety of computational science and engineering fields, including computational fluid dynamics, nano physics, computational chemistry, structural dynamics, and computer-aided optimal design, to simulate the behavior of a system. As the demand for the accuracy and complexity of the simulation grows, however, the cost of executing the simulation is rapidly increasing. It, therefore, is very important to lower the total execution time of the simulation especially when that simulation makes a huge number of repetitions with varying values of input parameters. In this paper we develop a simulation service system that provides the ability to predict the result of the requested simulation without actual execution for that simulation: by recording and then returning previously obtained or predicted results of that simulation. To achieve the goal of avoiding repetitive simulation, the system provides two main functionalities: (1) storing simulation-result records into database and (2) predicting from the database the result of a requested simulation using statistical machine learning techniques. In our experiments we evaluate the prediction performance of the system using real airfoil simulation result data. Our system on average showed a very low error rate at a minimum of 0.9% for a certain output variable. Using the system any user can receive the predicted outcome of her simulation promptly without actually running it, which would otherwise impose a heavy burden on computing and storage resources.

Development of an Automated Design Algorithm for the Longitudinal Members of Oil Tankers based on H-CSR (H-CSR 기반 유조선 종강도 부재의 설계 자동화 알고리즘 개발)

  • Park, Chan-im;Jeong, Sol;Song, Ha-cheol;Na, Seung-soo;Park, Min-cheol;Shin, Sang-hoon;Lee, Jeong-youl
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.503-513
    • /
    • 2016
  • In order to reduce the green-house gas exhaustion, International Maritime Organization (IMO) has been reinforcing carbon gas regulations. Due to the regulations, a lot of competitions for designing Eco ship in the shipbuilding industry are progressing now. It is faced with the necessity of reducing hull weight by combining automated systems for optimal compartment arrangement with hull structural design. Most researches on optimum structural design method have been consistently in progress and applied to minimize weight and cost of mid-ship section in preliminary ship design stage based on analytical structural analysis method on fixed compartment arrangement. In order to reduce design period and to improve international technical competitiveness by shortening the period of hull structural design and enhancing design accuracy, it has been felt necessity to combine optimized compartment arrangement with optimum design of ship structure based on the international regulations and rules. So in this study, the automated design algorithm for longitudinal members has been developed to combine automated algorithm of compartment arrangement with hull structural design system for oil tanker. The SeaTrust-Hullscan software developed by Korean Register is used to perform ship structural design for mother ship and selected design cases. The effect of weight reduction is verified with comparison of ship weight between mother ship and the cases suggested in this study.

A Study on Development of Portable Concrete Crack Measurement Device Using Image Processing Technique and Laser Sensors (이미지 처리기법 및 레이저 센서를 이용한 휴대용 콘크리트 균열 측정 장치 개발에 관한 연구)

  • Seo, Seunghwan;Ohn, Syng-Yup;Kim, Dong-Hyun;Kwak, Kiseok;Chung, Moonkyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.41-50
    • /
    • 2020
  • Since cracks in concrete structures expedite corrosion of reinforced concrete over a long period of time, regular on-site inspections are essential to ensure structural usability and prevent degradation. Most of the safety inspections of facilities rely on visual inspection with naked eye, so cost and time consuming are severe, and the reliability of results differs depending on the inspector. In this study, a portable measuring device that can be used for safety diagnosis and maintenance was developed as a device that measures the width and length of concrete cracks through image analysis of cracks photographed with a camera. This device captures the cracks found within a close distance (3 m), and accurately calculates the unit pixel size by laser distance measurement, and automatically calculates the crack length and width with the image processing algorithm developed in this study. In measurement results using the crack image applied to the experiment, the measurement of the length of a 0.3 mm crack within a distance of 3 m was possible with a range of about 10% error. The crack width showed a tendency to be overestimated by detecting surrounding pixels due to vibration and blurring effect during the binarization process, but it could be effectively corrected by applying the crack width reduction function.

Analysis of Feature Map Compression Efficiency and Machine Task Performance According to Feature Frame Configuration Method (피처 프레임 구성 방안에 따른 피처 맵 압축 효율 및 머신 태스크 성능 분석)

  • Rhee, Seongbae;Lee, Minseok;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.27 no.3
    • /
    • pp.318-331
    • /
    • 2022
  • With the recent development of hardware computing devices and software based frameworks, machine tasks using deep learning networks are expected to be utilized in various industrial fields and personal IoT devices. However, in order to overcome the limitations of high cost device for utilizing the deep learning network and that the user may not receive the results requested when only the machine task results are transmitted from the server, Collaborative Intelligence (CI) proposed the transmission of feature maps as a solution. In this paper, an efficient compression method for feature maps with vast data sizes to support the CI paradigm was analyzed and presented through experiments. This method increases redundancy by applying feature map reordering to improve compression efficiency in traditional video codecs, and proposes a feature map method that improves compression efficiency and maintains the performance of machine tasks by simultaneously utilizing image compression format and video compression format. As a result of the experiment, the proposed method shows 14.29% gain in BD-rate of BPP and mAP compared to the feature compression anchor of MPEG-VCM.

The Development of Biodegradable Fiber Tensile Tenacity and Elongation Prediction Model Considering Data Imbalance and Measurement Error (데이터 불균형과 측정 오차를 고려한 생분해성 섬유 인장 강신도 예측 모델 개발)

  • Se-Chan, Park;Deok-Yeop, Kim;Kang-Bok, Seo;Woo-Jin, Lee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.12
    • /
    • pp.489-498
    • /
    • 2022
  • Recently, the textile industry, which is labor-intensive, is attempting to reduce process costs and optimize quality through artificial intelligence. However, the fiber spinning process has a high cost for data collection and lacks a systematic data collection and processing system, so the amount of accumulated data is small. In addition, data imbalance occurs by preferentially collecting only data with changes in specific variables according to the purpose of fiber spinning, and there is an error even between samples collected under the same fiber spinning conditions due to difference in the measurement environment of physical properties. If these data characteristics are not taken into account and used for AI models, problems such as overfitting and performance degradation may occur. Therefore, in this paper, we propose an outlier handling technique and data augmentation technique considering the characteristics of the spinning process data. And, by comparing it with the existing outlier handling technique and data augmentation technique, it is shown that the proposed technique is more suitable for spinning process data. In addition, by comparing the original data and the data processed with the proposed method to various models, it is shown that the performance of the tensile tenacity and elongation prediction model is improved in the models using the proposed methods compared to the models not using the proposed methods.

A Study on the Development of High Sensitivity Collision Simulation with Digital Twin (디지털 트윈을 적용한 고감도 충돌 시뮬레이션 개발을 위한 연구)

  • Ki, Jae-Sug;Hwang, Kyo-Chan;Choi, Ju-Ho
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.813-823
    • /
    • 2020
  • Purpose: In order to maximize the stability and productivity of the work through simulation prior to high-risk facilities and high-cost work such as dismantling the facilities inside the reactor, we intend to use digital twin technology that can be closely controlled by simulating the specifications of the actual control equipment. Motion control errors, which can be caused by the time gap between precision control equipment and simulation in applying digital twin technology, can cause hazards such as collisions between hazardous facilities and control equipment. In order to eliminate and control these situations, prior research is needed. Method: Unity 3D is currently the most popular engine used to develop simulations. However, there are control errors that can be caused by time correction within Unity 3D engines. The error is expected in many environments and may vary depending on the development environment, such as system specifications. To demonstrate this, we develop crash simulations using Unity 3D engines, which conduct collision experiments under various conditions, organize and analyze the resulting results, and derive tolerances for precision control equipment based on them. Result: In experiments with collision experiment simulation, the time correction in 1/1000 seconds of an engine internal function call results in a unit-hour distance error in the movement control of the collision objects and the distance error is proportional to the velocity of the collision. Conclusion: Remote decomposition simulators using digital twin technology are considered to require limitations of the speed of movement according to the required precision of the precision control devices in the hardware and software environment and manual control. In addition, the size of modeling data such as system development environment, hardware specifications and simulations imitated control equipment and facilities must also be taken into account, available and acceptable errors of operational control equipment and the speed required of work.