• Title/Summary/Keyword: software development & applications

Search Result 820, Processing Time 0.03 seconds

Design and Prototype Implementation of Hybrid App for Geo-Metadata Searching of Satellite Images (위성영상정보 공간 메타데이터 검색 하이브리드 앱 설계 및 시험 구현)

  • Kim, Kwang-Seob;Lee, Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.203-211
    • /
    • 2011
  • Recently, information communication technologies such as smartphone or mobile app greatly affect various application fields including geo-spatial domain. And development scheme of mobile web app or hybrid app regards as the most important computing technology which is combined each advantage of mobile app and mobile web. Despite these trends, it is general case that satellite images are used for the background image for other contents services. With this motivation, hybrid app for geo-metadata as the base for dissemination and service is designed and implemented as the prototype, in this study. At the design stage, HTML5, which is the core technology on an international standardization process for hybrid app, is applied. In the implementation, PhoneGap and Sencha Touch as mobile SDK(Software Development Kit) supporting HTML5 on cross-platform in open sources are used. In prototype, some KOMPSAT-2 images covering small area and mandatory elements in geo-metafata standard are tested. As mobile industry applications and business service models based on satellite images on mobile platform are progressing and diversifying, it is expected that this approach and implemented prototype are considered as an important reference.

The Analysis on Technology Acceptance Model for the 3D Printing Industry with the Social Economic Environment Converged Unified Theory Of Acceptance and Use of Technology Model (3D 프린팅 산업에 대한 사회경제환경 융합형 통합기술수용모델을 통한 기업의 3D기술수용의도 분석)

  • Kim, Young-soo;Hong, Ah-reum
    • Journal of Korea Technology Innovation Society
    • /
    • v.22 no.1
    • /
    • pp.119-157
    • /
    • 2019
  • It is important for the people in the 3D printing industry to determine which factors influence the decision-making that determine the adoption of 3D printers and the role of the factors. Through this, we intend to find ways to contribute to the development of 3D printing industry in Korea by increasing utilization of 3D printer used in domestic companies and increasing investment in related industries. 3D printers are making rapid progress according to the development of technology, the public interest, and the activation of investment. Foreign countries have made remarkable progress in equipment, materials, software, and industrial applications, but they are lower than expected in Korea. It is necessary to introduce a smooth 3D printer in order to revitalize the 3D printer industry and enlarge the base, but it is insufficient for actual introduction and field application. The independent variables that represent economic, technological, and environmental characteristics were selected through a literature survey, and a model for accepting integrated technology for convergence of societies in the 3D printing industry was proposed. This study confirms that economic factors such as output unit price, government support, and environmental factors such as 3D contents should be developed organically for the introduction of 3D printing technology and equipment. This require systematic and effective support from the government, and it is necessary to improve the economic support, related laws, and systems that can be directly experienced by the user as a user. As the domestic 3D printing industry develops with economic, technological and time investment, 3D printing industry should be the key engine of the 4th industrial revolution.

A Study on Global Blockchain Economy Ecosystem Classification and Intelligent Stock Portfolio Performance Analysis (글로벌 블록체인 경제 생태계 분류와 지능형 주식 포트폴리오 성과 분석)

  • Kim, Honggon;Ryu, Jongha;Shin, Woosik;Kim, Hee-Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.209-235
    • /
    • 2022
  • Starting from 2010, blockchain technology, along with the development of artificial intelligence, has been in the spotlight as the latest technology to lead the 4th industrial revolution. Furthermore, previous research regarding blockchain's technological applications has been ongoing ever since. However, few studies have been examined the standards for classifying the blockchain economic ecosystem from a capital market perspective. Our study is classified into a collection of interviews of software developers, entrepreneurs, market participants and experts who use blockchain technology to utilize the blockchain economic ecosystem from a capital market perspective for investing in stocks, and case study methodologies of blockchain economic ecosystem according to application fields of blockchain technology. Additionally, as a way that can be used in connection with equity investment in the capital market, the blockchain economic ecosystem classification methodology was established to form an investment universe consisting of global blue-chip stocks. It also helped construct an intelligent portfolio through quantitative and qualitative analysis that are based on quant and artificial intelligence strategies and evaluate its performances. Lastly, it presented a successful investment strategy according to the growth of blockchain economic ecosystem. This study not only classifies and analyzes blockchain standardization as a blockchain economic ecosystem from a capital market, rather than a technical, point of view, but also constructs a portfolio that targets global blue-chip stocks while also developing strategies to achieve superior performances. This study provides insights that are fused with global equity investment from the perspectives of investment theory and the economy. Therefore, it has practical implications that can contribute to the development of capital markets.

Development of a low-power remote monitoring module for set-net fish school based on WCDMA (WCDMA 기반의 저전력 정치망 어군 정보전송 모듈 개발)

  • Donggil LEE;Myungsung KOO;Gyeom HEO;Jiwon CHEONG;Hyohyuc IM;Jaehyun BAE
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.3
    • /
    • pp.206-214
    • /
    • 2023
  • Fish school monitoring technology is utilized for various purposes, such as boat fishing and resource surveys. With advancements in information and communication technology, this technology has expanded its application to remote areas. Its significance has grown in fishing sites, particularly for improving the efficiency and cost-effectiveness of set-net fishing. Set-net fishing gears are not limited to coastal areas, but are also installed in inland and remote sea regions. Consequently, fishermen require technology that allows them to quickly transmit information about approaching fish schools and enables them to perform long-term monitoring. The development of remote monitoring technology for set-net fish schools must consider crucial design factors such as communication range, transmission speed, power consumption of information modules, and operational expenses. In this study, we developed a low-power remote monitoring module for set-net fish school based on WCDMA. The module was specifically designed to minimize power consumption, allowing for communication over long distances and extended operation times in set-net fishing applications. Furthermore, we developed a web server software application that enables remote access to fish schools and provides real-time weather information. The performance of the developed module was evaluated through set-net fishing site application and experiments with moving ships on the sea. The experimental results demonstrated that the remote monitoring system, consisting of the developed low-power remote monitoring module for set-net fish school based on WCDMA and a fish finder, had an average power consumption of 4.6 W, a maximum communication range of 22.84 km, and a data transmission and reception rate of 98.79%. The maximum fish school information transmission and reception rate was 97.26%

Design and Implementation of an Execution-Provenance Based Simulation Data Management Framework for Computational Science Engineering Simulation Platform (계산과학공학 플랫폼을 위한 실행-이력 기반의 시뮬레이션 데이터 관리 프레임워크 설계 및 구현)

  • Ma, Jin;Lee, Sik;Cho, Kum-won;Suh, Young-kyoon
    • Journal of Internet Computing and Services
    • /
    • v.19 no.1
    • /
    • pp.77-86
    • /
    • 2018
  • For the past few years, KISTI has been servicing an online simulation execution platform, called EDISON, allowing users to conduct simulations on various scientific applications supplied by diverse computational science and engineering disciplines. Typically, these simulations accompany large-scale computation and accordingly produce a huge volume of output data. One critical issue arising when conducting those simulations on an online platform stems from the fact that a number of users simultaneously submit to the platform their simulation requests (or jobs) with the same (or almost unchanging) input parameters or files, resulting in charging a significant burden on the platform. In other words, the same computing jobs lead to duplicate consumption computing and storage resources at an undesirably fast pace. To overcome excessive resource usage by such identical simulation requests, in this paper we introduce a novel framework, called IceSheet, to efficiently manage simulation data based on execution metadata, that is, provenance. The IceSheet framework captures and stores each provenance associated with a conducted simulation. The collected provenance records are utilized for not only inspecting duplicate simulation requests but also performing search on existing simulation results via an open-source search engine, ElasticSearch. In particular, this paper elaborates on the core components in the IceSheet framework to support the search and reuse on the stored simulation results. We implemented as prototype the proposed framework using the engine in conjunction with the online simulation execution platform. Our evaluation of the framework was performed on the real simulation execution-provenance records collected on the platform. Once the prototyped IceSheet framework fully functions with the platform, users can quickly search for past parameter values entered into desired simulation software and receive existing results on the same input parameter values on the software if any. Therefore, we expect that the proposed framework contributes to eliminating duplicate resource consumption and significantly reducing execution time on the same requests as previously-executed simulations.

A Comprehensive Representation Model for Spatial Relations among Regions and Physical Objects considering Property of Container and Gravity (Container 성질과 중력을 고려한 공간과 객체의 통합적 공간관계 표현 모델)

  • Park, Jong-Hee;Lim, Young-Jae
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.3
    • /
    • pp.194-204
    • /
    • 2010
  • A space, real or virtual, comprises regions as its parts and physical objects residing in them. A coherent and sophisticated representaion scheme for their spatial relations premises the precision and plausibility in its associated agents' inferencing on the spatial relations and the development of events occurring in such a space. The existing spatial models are not suitable for a comprehensive representation of the general spatial relations in that they have limited expressive powers based on the dichotomy between the large and small scales, or support only a small set of topological relations. The representaion model we propose has the following distinctive chracteristics: firstly, our model provides a comprehensive representation scheme to accommodate large and small scale spaces in an integrated fashion; secondly, our model greatly elaborated the spatial relations among the small-scale objects based on their contact relations and the compositional relations among their respective components objects beyond the basic topological relations like disjoint and touch; thirdly, our model further diversifies the types of supported relations by adding the container property besides the soildness together with considering the gravity direction. The resulting integrated spatial knowledge representation scheme considering the gravity allows the diverse spatial relations in the real world to be simulated in a precise manner in relation to the associated spatial events and provides an expression measure for the agents in such a cyber-world to capture the spatial knowledge to be used for recognizing the situations in the spatial aspects.

Effects of PTO gear face width on safety factors

  • Jang, Jeong-Hoon;Chung, Sun-Ok;Choi, Chang-Hyun;Park, Young-Jun;Chun, Won-Ki;Kim, Seon-Il;Kwon, Oh-Won;Kim, Chang-Won;Hong, Soon-Jung;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.650-655
    • /
    • 2016
  • Gears are components of transmission which transmit the power of an engine to a machine and offer numerous speed ratios, a compact structure, and high efficiency of power transmission. Gear train design in the automotive industry uses simulation software. However, PTO (Power Take-Off) gear design for agricultural applications uses the empirical method because of the wide range of load fluctuations in agricultural fields. The PTO is an important part of agricultural tractors which transmits the power to various tractor implements. Therefore, a simulation was essential to the optimal design of the PTO. When the PTO gear is optimally designed, there are many advantages such as low cost, reduced size, and light weight. In this study, we conducted the bending and contact safety factor simulation for the PTO gear of an agricultural tractor. The bending and contact safety factors were calculated on ISO 6336 : 2006 by decreasing the face widths of the PTO pinion and wheel gear from 18 mm at an interval of 1 mm. The safety factor of the PTO gear decreased as the face width decreased. The contact safety factors of the pinion and wheel gear were 1.45 and 1.53, respectively, when the face width was 18 mm. The simulation results showed that the face width of the PTO gear should be greater than 9 mm to maintain the bending and contact safety factors higher than 1. It would be possible to reduce the weight of the PTO gear for different uses and working conditions. This study suggests that the possibility of designing an optimal PTO gear decreases as its face width decreases.

Design to Realtime Test Data Topic Utilize of Data Distribution Service (데이터 분산 서비스를 활용한 실시간 시험자료 토픽 설계)

  • Choi, Won-gyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1447-1454
    • /
    • 2017
  • The realtime test data topic means that process for the data efficiently from many kinds of measurement device at the test range. There are many measurement devices in test range. The test range require accurate observation and determine on test object. In this realtime test data slaving framework system, the system can produce variety of test informations and all these data also must be transmitted to test information management or display system in realtime. Using RTI DDS(Data Distribution Service) middle ware Ver 5.2, we can product the efficiency of system usability and QoS(Quality of Service) requirements. So the application user enables to concentrate on applications, not middle ware. As the reason, Complex function is provided by the DDS, not the application such as Visualization Software. In this paper, I suggest the realtime test data topic on slaving framework of realtime test data based on DDS at the test range system.

A Case Study on SK Telecom's Next Generation Marketing System Development (SK텔레콤의 차세대 마케팅 시스템 개발사례 연구)

  • Lee, Sang-Goo;Jang, Si-Young;Yang, Jung-Yeon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.2
    • /
    • pp.158-170
    • /
    • 2008
  • In response to the changing demands of ever competitive market, SK Telecom has built a new marketing system that can support dynamic marketing campaigns and, at the same time, scale up to the large volumes of data and transactions for the next decade. The system which employs Unix-based client-server (using Web browser interfaces) architecture will replace the current mainframe-based COIS system. The project, named NGM (Next Generation Marketing ), is unprecedentedly large in scale. However, both managerial and technical problems led the project into a crisis. The application framework that depended on a software solution from a major global vendor could not support the dynamic functionalities required for the new system. In March 2005, SK telecom declared the suspension of the NGM project. The second phase of the project started in May 2005 following a comprehensive replanning. It was decided that no single existing solution could cope with the complexity of the new system and hence the new system would be custom-built. As such. a number of technical challenges emerged. In this paper, we report on the three key dimensions of technical challenges - middleware and application framework, database architecture and tuning, and system performance. The processes and approaches, adopted in building NGM system, may be viewed as "best practices" in the telecom industry. The completed NGM system, now called "U.key System," successfully came into operation on the ninth of October, 2006. This new infrastructure is expected to give birth to a series of innovative, fruitful, and customer-oriented applications in the near future.

Development of an Imaging-DOAS System for 2-D Remote Sensing of Atmospheric Gases (대기가스오염물질의 이차원 원격 모니터링을 위한 Imaging-DOAS 개발)

  • Lee, Han-Lim;Lee, Chul-Kyu;Jung, Jin-Sang;Park, Jeong-Eun;Kim, Young-Joon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.150-157
    • /
    • 2006
  • Spatially resolved remote identification and quantification of trace gases in the atmosphere is desirable in various fields of scientific research as well as in public security and industrial contexts. Environmental observations investigating causes, extent md consequences of air pollution are of fundamental interest. We present an Imaging-DOAS system, a ground based remote sensing instrument that allows spatially resolved mapping of atmospheric trace gases by a differential optical absorption spectroscopy(DOAS) with sun scattered light as the light source. A passive DOAS technique permits the identification and quantification of various gases, e.g., $NO_2,\;SO_2,\;and\;CH_2O$, from their differential absorption structures with high sensitivity. The Imaging-DOAS system consists of a scanning mirror, a focusing lens, a spectrometer, a 2-D CCD, ad the integral control software. An imaging spectrometer simultaneously acquires spectral information on the incident light in one spatial dimension(column) and sequentially scans the next spatial dimension with a motorized scanning mirror. The structure of the signal acquisition system is described in detail and the evaluation method is also briefly discussed. Applications of imaging of the $NO_2$ contents in the exhaust plumes from a power plant are presented.