• Title/Summary/Keyword: software defined networks (SDN)

Search Result 94, Processing Time 0.022 seconds

Content-Aware D2D Caching for Reducing Visiting Latency in Virtualized Cellular Networks

  • Sun, Guolin;Al-Ward, Hisham;Boateng, Gordon Owusu;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.514-535
    • /
    • 2019
  • Information-centric networks operate under the assumption that all network components have built-in caching capabilities. Integrating the caching strategies of information centric networking (ICN) with wireless virtualization improves the gain of virtual infrastructure content caching. In this paper, we propose a framework for software-defined information centric virtualized wireless device-to-device (D2D) networks. Enabling D2D communications in virtualized ICN increases the spectral efficiency due to reuse and proximity gains while the software-defined network (SDN) as a platform also simplifies the computational overhead. In this framework, we propose a joint virtual resource and cache allocation solution for latency-sensitive applications in the next-generation cellular networks. As the formulated problem is NP-hard, we design low-complexity heuristic algorithms which are intuitive and efficient. In our proposed framework, different services can share a pool of infrastructure items. We evaluate our proposed framework and algorithm through extensive simulations. The results demonstrate significant improvements in terms of visiting latency, end user QoE, InP resource utilization and MVNO utility gain.

A Framework for Proactive Handover in Wireless Networks (무선 네트워크에서 사전 핸드오버를 위한 프레임워크)

  • Duc, Thang Le;Le, Duc Tai;Choo, Hyunseung
    • Annual Conference of KIPS
    • /
    • 2014.11a
    • /
    • pp.173-174
    • /
    • 2014
  • Handover is constantly a challenging issue in wireless networks. Most of the existing solutions are host-based, which are implemented on the wireless terminals and leave the decision making to the terminals. This paper studies the problem of network-based handover in the wireless networks with the constraints of low latency as well as low computational time. To address this problem, we employ the software-defined network (SDN) architecture to facilitate handover. According to the operational model of the SDN, we define a workflow for all involved network entities, and then design a framework implementing the workflow as a complete handover system. The proposed framework aims to establish a channel conveying the mobility-related information of devices and the context information of their vicinity from the switches/access routers to the controllers. Based on collected information, the controller can optimally execute the handover.

Performance Evaluation of SDN Controllers: RYU and POX for WBAN-based Healthcare Applications

  • Lama Alfaify;Nujud Alnajem;Haya Alanzi;Rawan Almutiri;Areej Alotaibi;Nourah Alhazri;Awatif Alqahtani
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.219-230
    • /
    • 2023
  • Wireless Body Area Networks (WBANs) have made it easier for healthcare workers and patients to monitor patients' status continuously in real time. WBANs have complex and diverse network structures; thus, management and control can be challenging. Therefore, considering emerging Software-defined networks (SDN) with WBANs is a promising technology since SDN implements a new network management and design approach. The SDN concept is used in this study to create more adaptable and dynamic network architectures for WBANs. The study focuses on comparing the performance of two SDN controllers, POX and Ryu, using Mininet, an open-source simulation tool, to construct network topologies. The performance of the controllers is evaluated based on bandwidth, throughput, and round-trip time metrics for networks using an OpenFlow switch with sixteen nodes and a controller for each topology. The study finds that the choice of network controller can significantly impact network performance and suggests that monitoring network performance indicators is crucial for optimizing network performance. The project provides valuable insights into the performance of SDN-based WBANs using POX and Ryu controllers and highlights the importance of selecting the appropriate network controller for a given network architecture.

MWMon: A Software Defined Network-based Malware Monitor

  • Jo, Min Jae;Shin, Ji Sun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.5
    • /
    • pp.37-44
    • /
    • 2015
  • An antivirus is a widely used solution for detecting malicious softwares in client devices. The performance of antivirus solutions in the mobile client environment is critical due to its resource constrains. Many solutions light-weighting client's overhead in the mobile client environment have been developed. However, most solutions require platform modifications or software installations and it decreases their realizations in practice. In this paper, we propose a solution detecting malwares on networks using the Software Defined Network (SDN). Our main goal is designing a solution detecting malwares of mobile client without involving the client into the work. We contribute to provide a solution that does not require client-side installations or modifications and so is easily applicable in practice.

A Routing Algorithm based on Deep Reinforcement Learning in SDN (SDN에서 심층강화학습 기반 라우팅 알고리즘)

  • Lee, Sung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1153-1160
    • /
    • 2021
  • This paper proposes a routing algorithm that determines the optimal path using deep reinforcement learning in software-defined networks. The deep reinforcement learning model for learning is based on DQN, the inputs are the current network state, source, and destination nodes, and the output returns a list of routes from source to destination. The routing task is defined as a discrete control problem, and the quality of service parameters for routing consider delay, bandwidth, and loss rate. The routing agent classifies the appropriate service class according to the user's quality of service profile, and converts the service class that can be provided for each link from the current network state collected from the SDN. Based on this converted information, it learns to select a route that satisfies the required service level from the source to the destination. The simulation results indicated that if the proposed algorithm proceeds with a certain episode, the correct path is selected and the learning is successfully performed.

FuzzyGuard: A DDoS attack prevention extension in software-defined wireless sensor networks

  • Huang, Meigen;Yu, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3671-3689
    • /
    • 2019
  • Software defined networking brings unique security risks such as control plane saturation attack while enhancing the performance of wireless sensor networks. The attack is a new type of distributed denial of service (DDoS) attack, which is easy to launch. However, it is difficult to detect and hard to defend. In response to this, the attack threat model is discussed firstly, and then a DDoS attack prevention extension, called FuzzyGuard, is proposed. In FuzzyGuard, a control network with both the protection of data flow and the convergence of attack flow is constructed in the data plane by using the idea of independent routing control flow. Then, the attack detection is implemented by fuzzy inference method to output the current security state of the network. Different probabilistic suppression modes are adopted subsequently to deal with the attack flow to cost-effectively reduce the impact of the attack on the network. The prototype is implemented on SDN-WISE and the simulation experiment is carried out. The evaluation results show that FuzzyGuard could effectively protect the normal forwarding of data flow in the attacked state and has a good defensive effect on the control plane saturation attack with lower resource requirements.

Weight Adjustment Scheme Based on Hop Count in Q-routing for Software Defined Networks-enabled Wireless Sensor Networks

  • Godfrey, Daniel;Jang, Jinsoo;Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.1
    • /
    • pp.22-30
    • /
    • 2022
  • The reinforcement learning algorithm has proven its potential in solving sequential decision-making problems under uncertainties, such as finding paths to route data packets in wireless sensor networks. With reinforcement learning, the computation of the optimum path requires careful definition of the so-called reward function, which is defined as a linear function that aggregates multiple objective functions into a single objective to compute a numerical value (reward) to be maximized. In a typical defined linear reward function, the multiple objectives to be optimized are integrated in the form of a weighted sum with fixed weighting factors for all learning agents. This study proposes a reinforcement learning -based routing protocol for wireless sensor network, where different learning agents prioritize different objective goals by assigning weighting factors to the aggregated objectives of the reward function. We assign appropriate weighting factors to the objectives in the reward function of a sensor node according to its hop-count distance to the sink node. We expect this approach to enhance the effectiveness of multi-objective reinforcement learning for wireless sensor networks with a balanced trade-off among competing parameters. Furthermore, we propose SDN (Software Defined Networks) architecture with multiple controllers for constant network monitoring to allow learning agents to adapt according to the dynamics of the network conditions. Simulation results show that our proposed scheme enhances the performance of wireless sensor network under varied conditions, such as the node density and traffic intensity, with a good trade-off among competing performance metrics.

Match Field based Algorithm Selection Approach in Hybrid SDN and PCE Based Optical Networks

  • Selvaraj, P.;Nagarajan, V.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5723-5743
    • /
    • 2018
  • The evolving internet-based services demand high-speed data transmission in conjunction with scalability. The next generation optical network has to exploit artificial intelligence and cognitive techniques to cope with the emerging requirements. This work proposes a novel way to solve the dynamic provisioning problem in optical network. The provisioning in optical network involves the computation of routes and the reservation of wavelenghs (Routing and Wavelength assignment-RWA). This is an extensively studied multi-objective optimization problem and its complexity is known to be NP-Complete. As the exact algorithms incurs more running time, the heuristic based approaches have been widely preferred to solve this problem. Recently the software-defined networking has impacted the way the optical pipes are configured and monitored. This work proposes the dynamic selection of path computation algorithms in response to the changing service requirements and network scenarios. A software-defined controller mechanism with a novel packet matching feature was proposed to dynamically match the traffic demands with the appropriate algorithm. A software-defined controller with Path Computation Element-PCE was created in the ONOS tool. A simulation study was performed with the case study of dynamic path establishment in ONOS-Open Network Operating System based software defined controller environment. A java based NOX controller was configured with a parent path computation element. The child path computation elements were configured with different path computation algorithms under the control of the parent path computation element. The use case of dynamic bulk path creation was considered. The algorithm selection method is compared with the existing single algorithm based method and the results are analyzed.

Network Slice Selection Function on M-CORD (M-CORD 기반의 네트워크 슬라이스 선택 기능)

  • Rivera, Javier Diaz;Khan, Talha Ahmed;Asif, Mehmood;Song, Wang-Cheol
    • KNOM Review
    • /
    • v.21 no.2
    • /
    • pp.35-45
    • /
    • 2018
  • As Network Slicing functionality gets applied to mobile networking, a mechanism that enables the selection of network slices becomes indispensable. Following the 3GPP Technical Specification for the 5G Architecture, the inclusion of the Network Slice Selection Function (NSSF) in order to leverage the process of slice selection is apparent. However, actual implementation of this network function needs to deal with the dynamic changes of network instances, due to this, a platform that supports the orchestration of Virtual Network Functions (VNF) is required. Our proposed solution include the use of the Central Office Rearchitected as a Data Center (CORD) platform, with the specified profile for mobile networks (M-CORD) that integrates a service orchestrator (XOS) alongside solutions oriented to Software Defined Networking (SDN), Network Function Virtualization (VNF) and virtual machine management through OpenStack, in order to provide the right ecosystem where our implementation of NSSF can obtain slice information dynamically by relying on synchronization between back-end services and network function instances.

New approach to dynamic load balancing in software-defined network-based data centers

  • Tugrul Cavdar;Seyma Aymaz
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.433-447
    • /
    • 2023
  • Critical issues such as connection congestion, long transmission delay, and packet loss become even worse during epidemic, disaster, and so on. In this study, a link load balancing method is proposed to address these issues on the data plane, a plane of the software-defined network (SDN) architecture. These problems are NP-complete, so a meta-heuristic approach, discrete particle swarm optimization, is used with a novel hybrid cost function. The superiority of the proposed method over existing methods in the literature is that it provides link and switch load balancing simultaneously. The goal is to choose a path that minimizes the connection load between the source and destination in multipath SDNs. Furthermore, the proposed work is dynamic, so selected paths are regularly updated. Simulation results prove that with the proposed method, streams reach the target with minimum time, no loss, low power consumption, and low memory usage.