• Title/Summary/Keyword: software architecture

Search Result 1,994, Processing Time 0.026 seconds

A Framework for the Geometric Modeler with Open Architecture (개방형 형상모델러의 시스템 설계)

  • S.H. Han;G.H. Choi;S.H. Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.4
    • /
    • pp.9-18
    • /
    • 1995
  • The use of CAD/CAM systems is growing fast in the shipbuilding industry. To develope a geometric modeler, the existing CAD/CAM systems have been analysed. Because existing systems have closed architectures, it is not easy to investigate the internal structures. However, new trends in the software engineering, open architectured systems, pose some possibility to develope the geometric modeler. Several geometric modelers are analysed to extract component functions and modules. ACIS of the Spatial Technology, AIS of the CAM-I consortium, the STEP part for the geometry and topology, CAD*I of the ESPRIT project, and domestic modelers are investigated. Based on this analysis, a reference model which shows the framework of the modeler is proposed. With the data structure supporting non-manifold topologies, the reference model can be used to encourage a cooperative development program.

  • PDF

Local optimization of thruster configuration based on a synthesized positioning capability criterion

  • Xu, Shengwen;Wang, Lei;Wang, Xuefeng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.6
    • /
    • pp.1044-1055
    • /
    • 2015
  • DPCap analysis can assist in determining the maximum environmental forces the DP system can counteract for a given heading. DPCap analysis results are highly affected by the thrust forces provided by the thrust system which consists of several kinds of thrusters. The thrust forces and moment are determined by the maximum thrust of the thrusters as well as the thruster configuration. In this paper, a novel local optimization of thruster configuration based on a synthesized positioning capability criterion is proposed. The combination of the discrete locations of the thrusters forms the thruster configuration and is the input, and the synthesized positioning capability is the output. The quantified synthesized positioning capability of the corresponding thruster configuration can be generated as the output. The optimal thruster configuration is the one which makes the vessel has the best positioning capability. A software program was developed based on the present study. A local optimization of thruster configuration for a supply vessel was performed to demonstrate the effectiveness and efficiency of the program. Even though the program cannot find the global optimal thruster configuration, its high efficiency makes it essentially practical in an engineering point. It may be used as a marine research tool and give guidance to the designer of the thrust system.

Development of Augmented Reality Tool for Architectural Design (건축설계 검증을 위한 증강현실 설계지원도구 개발)

  • Ryu, Jae-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.1
    • /
    • pp.49-62
    • /
    • 2015
  • In this study we have proposed the prototype of design support device for architectural design assessment using the building information modeling(BIM) data and the augmented reality(AR) technology. The proposed system consists of novel hardware composition with the transparent display, the mock-up model and the digital architectural model in the new shape of frame. The removal of background and the correction of viewer point in the capture video are proposed in order to use the transparent display in AR application. The BIM data formats are reviewed to be converted for using in AR application. Also the proposed system can be expanded to multi-user collaboration system from two user system through the suggested hardware and software compositions. The results of this study will be applied to use the mock-up model and digital architectural model in order to carry out the design assessment process efficiently and economically in the architectural design field.

CANVAS: A Cloud-based Research Data Analytics Environment and System

  • Kim, Seongchan;Song, Sa-kwang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.117-124
    • /
    • 2021
  • In this paper, we propose CANVAS (Creative ANalytics enVironment And System), an analytics system of the National Research Data Platform (DataON). CANVAS is a personalized analytics cloud service for researchers who need computing resources and tools for research data analysis. CANVAS is designed in consideration of scalability based on micro-services architecture and was built on top of open-source software such as eGovernment Standard framework (Spring framework), Kubernetes, and JupyterLab. The built system provides personalized analytics environments to multiple users, enabling high-speed and large-capacity analysis by utilizing high-performance cloud infrastructure (CPU/GPU). More specifically, modeling and processing data is possible in JupyterLab or GUI workflow environment. Since CANVAS shares data with DataON, the research data registered by users or downloaded data can be directly processed in the CANVAS. As a result, CANVAS enhances the convenience of data analysis for users in DataON and contributes to the sharing and utilization of research data.

Study and Evaluation of Tourism Websites based on User Perspective

  • Shrestha, Deepanjal;Wenan, Tan;Rajkarnikar, Neesha;Shrestha, Deepmala;Jeong, Seung Ryul
    • Journal of Internet Computing and Services
    • /
    • v.22 no.4
    • /
    • pp.65-82
    • /
    • 2021
  • A well-designed website is mandatory for good marketing and proper tourism business. This research considers Nepal as a domain of study and specifically explores welcomenepal.com, the official tourism portal as a reference for the study. The work is based on the study of the existing literature, user-survey, and technical testing of the website using open-source testing tools to identify user perspective, design issues, website architecture and design quality of the tourism website. A population size of 400 respondents, which consist of both domestic and international tourist, are considered for the survey. Data is received from 360 respondents, which is analyzed using statistical tests like Cronbach's alpha, Pearson's correlation, cross-tabulations, bars charts and graphs to draw inferences and consclusion. The software-based test results serve as another important parameter for the evaluation of the current official website. This study brings out core needs of the tourist in terms of expectations from a tourism website and access technical quality of the current portal to provide necessary feedback and suggestions. The government officials, business houses, and web designers can utilize this work as a knowledge base to build tourism websites, which are user-centric. Further, the work is specifically important for Nepal government and tourism officials to identify shortcomings in their current website and make improvements for better design and user adaptability in future.

Time Series Data Analysis using WaveNet and Walk Forward Validation (WaveNet과 Work Forward Validation을 활용한 시계열 데이터 분석)

  • Yoon, Hyoup-Sang
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.4
    • /
    • pp.1-8
    • /
    • 2021
  • Deep learning is one of the most widely accepted methods for the forecasting of time series data which have the complexity and non-linear behavior. In this paper, we investigate the modification of a state-of-art WaveNet deep learning architecture and walk forward validation (WFV) in order to forecast electric power consumption data 24-hour-ahead. WaveNet originally designed for raw audio uses 1D dilated causal convolution for long-term information. First of all, we propose a modified version of WaveNet which activates real numbers instead of coded integers. Second, this paper provides with the training process with tuning of major hyper-parameters (i.e., input length, batch size, number of WaveNet blocks, dilation rates, and learning rate scheduler). Finally, performance evaluation results show that the prediction methodology based on WFV performs better than on the traditional holdout validation.

Implementation of query model of CQRS pattern using weather data (기상 데이터를 활용한 CQRS 패턴의 조회 모델 구현)

  • Seo, Bomin;Jeon, Cheolho;Jeon, Hyeonsig;An, Seyun;Park, Hyun-ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.6
    • /
    • pp.645-651
    • /
    • 2019
  • At a time when large amounts of data are being poured out, there are many changes in software architecture or data storage patterns because of the nature of the data being written, rather more read-intensive than writing. Accordingly, in this paper, the query model of Command Query Responsibility Segmentation (CQRS) pattern separating the responsibilities of commands and queries is used to implement an efficient high-capacity data lookup system in users' requirements. This paper uses the 2018 temperature, humidity and precipitation data of the Korea Meteorological Administration Open API to store about 2.3 billion data suitable for RDBMS (PostgreSQL) and NoSQL (MongoDB). It also compares and analyzes the performance of systems with CQRS pattern applied from the perspective of the web server (Web Server) implemented and systems without CQRS pattern, the storage structure performance of each database, and the performance corresponding to the data processing characteristics.

Kalman Filtering-based Traffic Prediction for Software Defined Intra-data Center Networks

  • Mbous, Jacques;Jiang, Tao;Tang, Ming;Fu, Songnian;Liu, Deming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.2964-2985
    • /
    • 2019
  • Global data center IP traffic is expected to reach 20.6 zettabytes (ZB) by the end of 2021. Intra-data center networks (Intra-DCN) will account for 71.5% of the data center traffic flow and will be the largest portion of the traffic. The understanding of traffic distribution in IntraDCN is still sketchy. It causes significant amount of bandwidth to go unutilized, and creates avoidable choke points. Conventional transport protocols such as Optical Packet Switching (OPS) and Optical Burst Switching (OBS) allow a one-sided view of the traffic flow in the network. This therefore causes disjointed and uncoordinated decision-making at each node. For effective resource planning, there is the need to consider joining the distributed with centralized management which anticipates the system's needs and regulates the entire network. Methods derived from Kalman filters have proved effective in planning road networks. Considering the network available bandwidth as data transport highways, we propose an intelligent enhanced SDN concept applied to OBS architecture. A management plane (MP) is added to conventional control (CP) and data planes (DP). The MP assembles the traffic spatio-temporal parameters from ingress nodes, uses Kalman filtering prediction-based algorithm to estimate traffic demand. Prior to packets arrival at edges nodes, it regularly forwards updates of resources allocation to CPs. Simulations were done on a hybrid scheme (1+1) and on the centralized OBS. The results demonstrated that the proposition decreases the packet loss ratio. It also improves network latency and throughput-up to 84 and 51%, respectively, versus the traditional scheme.

An Evaluation Method of Understanding SW Architectures in an Arduino-based SW Lecture for Non-major Undergraduates (비전공자 대상 아두이노 활용 SW 강좌에서 SW 구조 이해도 평가 방법)

  • Hur, Kyeong
    • Journal of Practical Engineering Education
    • /
    • v.11 no.1
    • /
    • pp.17-23
    • /
    • 2019
  • In applying SW education for non-major undergraduates, we applied the physical computing lesson using Arduino. There is a case in which the basic problem-solving process teaching method based on the computational thinking was proposed in the physical computing class using Arduino. However, in educating computational thinking process, it is necessary to evaluate and educate understanding of SW structures. After understanding SW structures, it is correct SW education flow to make creative outputs by applying computational thinking process. However, there is a lack of examples of how to evaluate understanding of SW structures in the class using Arduino. In this paper, we proposed a one - semester curriculum for lectures on SW education using Arduino for non-majors. In addition, we proposed and analyzed the evaluation method of the understanding of SW structures and the evaluation problems developed in this course.

Analysis of Tensor Processing Unit and Simulation Using Python (텐서 처리부의 분석 및 파이썬을 이용한 모의실행)

  • Lee, Jongbok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.165-171
    • /
    • 2019
  • The study of the computer architecture has shown that major improvements in price-to-energy performance stems from domain-specific hardware development. This paper analyzes the tensor processing unit (TPU) ASIC which can accelerate the reasoning of the artificial neural network (NN). The core device of the TPU is a MAC matrix multiplier capable of high-speed operation and software-managed on-chip memory. The execution model of the TPU can meet the reaction time requirements of the artificial neural network better than the existing CPU and the GPU execution models, with the small area and the low power consumption even though it has many MAC and large memory. Utilizing the TPU for the tensor flow benchmark framework, it can achieve higher performance and better power efficiency than the CPU or CPU. In this paper, we analyze TPU, simulate the Python modeled OpenTPU, and synthesize the matrix multiplication unit, which is the key hardware.