• Title/Summary/Keyword: software and artificial intelligence

Search Result 574, Processing Time 0.029 seconds

A Method on Associated Document Recommendation with Word Correlation Weights (단어 연관성 가중치를 적용한 연관 문서 추천 방법)

  • Kim, Seonmi;Na, InSeop;Shin, Juhyun
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.2
    • /
    • pp.250-259
    • /
    • 2019
  • Big data processing technology and artificial intelligence (AI) are increasingly attracting attention. Natural language processing is an important research area of artificial intelligence. In this paper, we use Korean news articles to extract topic distributions in documents and word distribution vectors in topics through LDA-based Topic Modeling. Then, we use Word2vec to vector words, and generate a weight matrix to derive the relevance SCORE considering the semantic relationship between the words. We propose a way to recommend documents in order of high score.

A Gradient-Based Explanation Method for Node Classification Using Graph Convolutional Networks

  • Chaehyeon Kim;Hyewon Ryu;Ki Yong Lee
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.803-816
    • /
    • 2023
  • Explainable artificial intelligence is a method that explains how a complex model (e.g., a deep neural network) yields its output from a given input. Recently, graph-type data have been widely used in various fields, and diverse graph neural networks (GNNs) have been developed for graph-type data. However, methods to explain the behavior of GNNs have not been studied much, and only a limited understanding of GNNs is currently available. Therefore, in this paper, we propose an explanation method for node classification using graph convolutional networks (GCNs), which is a representative type of GNN. The proposed method finds out which features of each node have the greatest influence on the classification of that node using GCN. The proposed method identifies influential features by backtracking the layers of the GCN from the output layer to the input layer using the gradients. The experimental results on both synthetic and real datasets demonstrate that the proposed explanation method accurately identifies the features of each node that have the greatest influence on its classification.

Extracting Features of Human Knowledge Systems for Active Knowledge Management Systems

  • Yuan Miao;Robert Gay;Siew, Chee-Kheong;Shen, Zhi-Qi
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.265-271
    • /
    • 2001
  • It is highly for the research in artificial intelligence area to be able to manage knowledge as human beings do. One of the fantastic natures that human knowledge management systems have is being active. Human beings actively manage their knowledge, solve conflicts and make inference. It makes a major difference from artificial intelligent systems. This paper focuses on the discussion of the features of that human knowledge systems, which underlies the active nature. With the features extracted, further research can be done to construct a suitable infrastructure to facilitate these features to build a man-made active knowledge management system. This paper proposed 10 features that human beings follow to maintain their knowledge. We believe it will advance the evolution of active knowledge management systems by realizing these features with suitable knowledge representation/decision models and software agent technology.

  • PDF

An Analysis on Artificial Intelligence Education for Disadvantaged student (소외계층 학생의 인공지능 교육 실태 조사)

  • Kim, Seong-Won;Kim, Youngmin;Lee, Youngjun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.235-236
    • /
    • 2022
  • 본 논문에서는 인공지능 교육에서 소외계층의 지원 방안을 도출하기 위하여 소외계층과 일반 학생의 인공지능 교육과 관련된 여러 요인의 실태를 조사하였다. 실태 조사 결과를 소외계층과 일반 학생을 비교하여, 소외계층의 인공지능 교육에서 시사점을 도출하고자 하였다. 연구를 위하여 인공지능 교육 관련 실태를 조사할 수 있는 설문을 구성하였으며, 온라인을 통해 설문을 진행하였다. 연구 결과, 소외계층 662명과 일반 학생 1,482명이 설문에 참여하였다. 소외계층은 일반 학생보다 인공지능에 대한 관심이 높았으며, 프로그램이 언어나 피지컬 컴퓨팅을 경험한 학생 비율이 높았다. 또한, 인공지능 직&·간접적 경험의 비율은 일반 학생과 비슷한 수준이었다. 하지만 인공지능 교육 경험 비율은 일반 학생이 약 20% 높았다. 이러한 내용을 종합하였을 때, 인공지능 교육에 대한 관심은 높지만, 인공지능 교육을 받는 학생의 비율은 낮은 것을 확인할 수 있었다.

  • PDF

Centralized Machine Learning Versus Federated Averaging: A Comparison using MNIST Dataset

  • Peng, Sony;Yang, Yixuan;Mao, Makara;Park, Doo-Soon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.742-756
    • /
    • 2022
  • A flood of information has occurred with the rise of the internet and digital devices in the fourth industrial revolution era. Every millisecond, massive amounts of structured and unstructured data are generated; smartphones, wearable devices, sensors, and self-driving cars are just a few examples of devices that currently generate massive amounts of data in our daily. Machine learning has been considered an approach to support and recognize patterns in data in many areas to provide a convenient way to other sectors, including the healthcare sector, government sector, banks, military sector, and more. However, the conventional machine learning model requires the data owner to upload their information to train the model in one central location to perform the model training. This classical model has caused data owners to worry about the risks of transferring private information because traditional machine learning is required to push their data to the cloud to process the model training. Furthermore, the training of machine learning and deep learning models requires massive computing resources. Thus, many researchers have jumped to a new model known as "Federated Learning". Federated learning is emerging to train Artificial Intelligence models over distributed clients, and it provides secure privacy information to the data owner. Hence, this paper implements Federated Averaging with a Deep Neural Network to classify the handwriting image and protect the sensitive data. Moreover, we compare the centralized machine learning model with federated averaging. The result shows the centralized machine learning model outperforms federated learning in terms of accuracy, but this classical model produces another risk, like privacy concern, due to the data being stored in the data center. The MNIST dataset was used in this experiment.

A Novel Study on Community Detection Algorithm Based on Cliques Mining (클리크 마이닝에 기반한 새로운 커뮤니티 탐지 알고리즘 연구)

  • Yang, Yixuan;Peng, Sony;Park, Doo-Soon;Kim, Seok-Hoon;Lee, HyeJung;Siet, Sophort
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.374-376
    • /
    • 2022
  • Community detection is meaningful research in social network analysis, and many existing studies use graph theory analysis methods to detect communities. This paper proposes a method to detect community by detecting maximal cliques and obtain the high influence cliques by high influence nodes, then merge the cliques with high similarity in social network.

Improving the Performance of Radiologists Using Artificial Intelligence-Based Detection Support Software for Mammography: A Multi-Reader Study

  • Jeong Hoon Lee;Ki Hwan Kim;Eun Hye Lee;Jong Seok Ahn;Jung Kyu Ryu;Young Mi Park;Gi Won Shin;Young Joong Kim;Hye Young Choi
    • Korean Journal of Radiology
    • /
    • v.23 no.5
    • /
    • pp.505-516
    • /
    • 2022
  • Objective: To evaluate whether artificial intelligence (AI) for detecting breast cancer on mammography can improve the performance and time efficiency of radiologists reading mammograms. Materials and Methods: A commercial deep learning-based software for mammography was validated using external data collected from 200 patients, 100 each with and without breast cancer (40 with benign lesions and 60 without lesions) from one hospital. Ten readers, including five breast specialist radiologists (BSRs) and five general radiologists (GRs), assessed all mammography images using a seven-point scale to rate the likelihood of malignancy in two sessions, with and without the aid of the AI-based software, and the reading time was automatically recorded using a web-based reporting system. Two reading sessions were conducted with a two-month washout period in between. Differences in the area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, and reading time between reading with and without AI were analyzed, accounting for data clustering by readers when indicated. Results: The AUROC of the AI alone, BSR (average across five readers), and GR (average across five readers) groups was 0.915 (95% confidence interval, 0.876-0.954), 0.813 (0.756-0.870), and 0.684 (0.616-0.752), respectively. With AI assistance, the AUROC significantly increased to 0.884 (0.840-0.928) and 0.833 (0.779-0.887) in the BSR and GR groups, respectively (p = 0.007 and p < 0.001, respectively). Sensitivity was improved by AI assistance in both groups (74.6% vs. 88.6% in BSR, p < 0.001; 52.1% vs. 79.4% in GR, p < 0.001), but the specificity did not differ significantly (66.6% vs. 66.4% in BSR, p = 0.238; 70.8% vs. 70.0% in GR, p = 0.689). The average reading time pooled across readers was significantly decreased by AI assistance for BSRs (82.73 vs. 73.04 seconds, p < 0.001) but increased in GRs (35.44 vs. 42.52 seconds, p < 0.001). Conclusion: AI-based software improved the performance of radiologists regardless of their experience and affected the reading time.

A Study on the development of elementary school SW·AI educational contents linked to the curriculum(camp type) (교육과정과 연계된 초등학교 캠프형 SW·AI교육 콘텐츠 개발에 관한 연구)

  • Pyun, YoungShin;Han, JungSoo
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.6
    • /
    • pp.49-54
    • /
    • 2022
  • Rapid changes in modern society after the COVID-19 have highlighted artificial intelligence talent as a major influencing factor in determining national competitiveness. Accordingly, the Ministry of Education planned a large-scale SW·AI camp education project to develop the digital capabilities of 4th to 6th grade elementary school students and middle and high school students who are in a vacuum in artificial intelligence education. Therefore, this study aims to develop a camp-type SW·AI education program for students in grades 4-6 of elementary school so that students in grades 4-6 of elementary school can acquire basic knowledge in artificial intelligence. For this, the meaning of SW·AI education in elementary school is defined and SW·AI contents to be dealt with in elementary school are: understanding of SW AI, 'principle and application of SW AI', and 'social impact of SW AI' was set. In addition, an attempt was made to link the set elements of elementary school SW AI education and learning with related subjects and units of textbooks currently used in elementary schools. As for the program used for education, entry, a software coding learning tool based on block coding, is designed to strengthen software programming basic competency, and all programs are designed to be operated centered on experience and experience-oriented participants in consideration of the developmental characteristics of elementary school students. In order for SW·AI education to be organized and operated as a member of the regular curriculum, it is suggested that research based on the analysis of regular curriculum contents and in-depth analysis of SW·AI education contents is necessary.

A Study on the Evaluation Direction of AI Education through the Analysis of SW Education Learner-centered Assessment Cases (SW교육 학습자 중심 평가 사례 분석을 통한 인공지능교육의 평가 방향 고찰)

  • Shin, Heenam;Ann, SungHun
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.5
    • /
    • pp.511-518
    • /
    • 2020
  • Preparing for the Fourth Industrial Revolution and Corona-19, our education is expanding a new chapter of learning to the era of AI education that incorporates software technology beyond software education. In this study, we will analyze the case of learner-centered assessment in software education and examine the assessment direction of artificial intelligence education through its effectiveness. Through the case of applying learner-centered assessment to non-computer subjects including computer subjects, we sought the effects on learners' learning, environmental conditions and assessment models of learner-centered evaluation, and through the case of applying the learner-centered assessment model to software education, we wanted to find out what the learner-centered assessment in artificial intelligence education suggests to the educational site. According to the analysis, the learner-centered assessment had a significant effect on the learner's achievement goal, and it is expected that the learner-centered assessment in artificial intelligence education will be carried out smoothly when an objective evaluation system and objective evaluation model are designed to help the learner's assessment, building digital environment conditions based on intelligent information technology.

A Study on Smart Device for Open Platform Ontology Construction of Autonomous Vihicles (자율주행자동차 오픈플랫폼 온톨로지 구축을 위한 스마트디바이스 연구)

  • Choi, Byung Kwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.3
    • /
    • pp.1-14
    • /
    • 2019
  • The 4th Industrial Revolution, intelligent automobile application technology is evolving beyond the limit of the mobile device to a variety of application software and multi-media collective technology with big data-based AI(artificial intelligence) technology. with the recent commercialization of 5G mobile communication service, artificial intelligent automobile technology, which is a fusion of automobile and IT technology, is evolving into more intelligent automobile service technology, and each multimedia platform service and application developed in such distributed environment is being developed Accordingly, application software technology developed with a single system SoC of a portable terminal device through various service technologies is absolutely required. In this paper, smart device design for ontology design of intelligent automobile open platform enables to design intelligent automobile middleware software design technology such as Android based SVC Codec and real time video and graphics processing that is not expressed in single ASIC application software technology as SoC based application designWe have experimented in smart device environment through researches, and newly designed service functions of various terminal devices provided as open platforms and application solutions in SoC environment and applied standardized interface analysis technique and proved this experiment.