• Title/Summary/Keyword: softening material

Search Result 287, Processing Time 0.028 seconds

Nonlinear probabilistic shear panel analysis using advanced sampling techniques

  • Strauss, Alfred;Ju, Hyunjin;Belletti, Beatrice;Ramstorfer, Maximilian;Cosma, Mattia Pancrazio
    • Structural Engineering and Mechanics
    • /
    • v.83 no.2
    • /
    • pp.179-193
    • /
    • 2022
  • The shear behaviour of reinforced concrete members has been studied over the past decades by various researchers, and it can be simulated by analysing shear panel elements which has been regarded as a basic element of reinforced concrete members subjected to in-plane biaxial stresses. Despite various experimental studies on shear panel element which have been conducted so far, there are still a lot of uncertainties related to what influencing factors govern the shear behaviour and affect failure mechanism in reinforced concrete members. To identify the uncertainties, a finite element analysis can be used, which enables to investigate the impact of specific variables such as the reinforcement ratio, the shear retention factor, and the material characteristics including aggregate interlock, tension stiffening, compressive softening, and shear behaviour at the crack surface. In this study, a non-linear probabilistic analysis was conducted on reinforced concrete panels using a finite element method optimized for reinforced concrete members and advanced sampling techniques so that probabilistic analysis can be performed effectively. Consequently, this study figures out what analysis methodology and input parameters have the most influence on shear behaviour of reinforced concrete panels.

Nonlinear vibration and primary resonance of multilayer functionally graded shallow shells with porous core

  • Kamran Foroutan;Liming Dai
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.335-351
    • /
    • 2023
  • This research studies the primary resonance and nonlinear vibratory responses of multilayer functionally graded shallow (MFGS) shells under external excitations. The shells considered with functionally graded porous (FGP) core and resting on two types of nonlinear viscoelastic foundations (NVEF) governed by either a linear model with two parameters of Winkler and Pasternak foundations or a nonlinear model of hardening/softening cubic stiffness augmented by a Kelvin-Voigt viscoelastic model. The shells considered have three layers, sandwiched by functionally graded (FG), FGP, and FG materials. To investigate the influence of various porosity distributions, two types of FGP middle layer cores are considered. With the first-order shear deformation theory (FSDT), Hooke's law, and von-Kármán equation, the stress-strain relations for the MFGS shells with FGP core are developed. The governing equations of the shells are consequently derived. For the sake of higher accuracy and reliability, the P-T method is implemented in numerically analyzing the vibration, and the method of multiple scales (MMS) as one of the perturbation methods is used to investigate the primary resonance. The results of the present research are verified with the results available in the literature. The analytical results are compared with the P-T method. The influences of material, geometry, and nonlinear viscoelastic foundation parameters on the responses of the shells are illustrated.

Effect of Cooling Rate and Temperature on Intercritical Annealing of Medium-Carbon Cr-Mo Alloy for High Strength Cold Heading Quality Wire Rod (고강도 냉간압조용 중탄소 Cr-Mo 합금강의 임계간 어닐링시 냉각속도 및 온도의 영향)

  • JongHyeok Lee;ByoungLok Jang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.4
    • /
    • pp.230-236
    • /
    • 2023
  • The current study deals with the effect of cooling rate and temperature for annealing on medium-carbon Cr-Mo alloy steel, especially for cold heading quality wire rod, to derive the optimum micro-structures for plastic deformation. This is to optimize the spheroidization heat treatment conditions for softening the material. Heat treatment was performed under seven different conditions at a temperature between Ac1 and Ac3, mostly within 720℃ to 760℃, and the main variables at this time were temperature, retention time and cooling rate. Microstructure and phase changes were observed for each test condition, and it was confirmed that they were greatly affected by the cooling rate. It was also confirmed that the cooling rate was changed in the range of 0.1℃/min to 5℃/min and affected by phase deformation and spheroidization fraction. The larger the spheroidization fraction, the lower the hardness, which is associated with the increasing connection of ferrite phases.

Guided waves of porous FG nanoplates with four edges clamped

  • Zhao, Jing-Lei;She, Gui-Lin;Wu, Fei;Yuan, Shu-Jin;Bai, Ru-Qing;Pu, Hua-Yan;Wang, Shilong;Luo, Jun
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.465-474
    • /
    • 2022
  • Based on the nonlocal strain gradient (NSG) theory and considering the influence of moment of inertia, the governing equations of motion of porous functionally graded (FG) nanoplates with four edges clamped are established; The Galerkin method is applied to eliminate the spatial variables of the partial differential equation, and the partial differential governing equation is transformed into an ordinary differential equation with time variables. By satisfying the boundary conditions and solving the characteristic equation, the dispersion relations of the porous FG strain gradient nanoplates with four edges fixed are obtained. It is found that when the wave number is very small, the influences of nonlocal parameters and strain gradient parameters on the dispersion relation is very small. However, when the wave number is large, it has a great influence on the group velocity and phase velocity. The nonlocal parameter represents the effect of stiffness softening, and the strain gradient parameter represents the effect of stiffness strengthening. In addition, we also study the influence of power law index parameter and porosity on guided wave propagation.

Characteristics of Opal Glass by Calcium Phosphate Opacifier for a LED Light Diffuser (Calcium Phosphate 유백제 투입량에 따른 LED Diffuser용 유백유리의 특성)

  • Ku, Hyun-Woo;Lim, Tae-Young;Hwang, Jonghee;Kim, Jin-Ho;Lee, Mi-Jai;Shin, Dong Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.75-81
    • /
    • 2013
  • We fabricated translucent opal glass to replace the polycarbonate diffuser in LED lighting systems in order to solve the durability problem. Batch materials of opal glass with a composition of calcium phosphate were created and melted at $1550^{\circ}C$, and the effect of opaqueness was identified by an addition of 1~7% calcium phosphate as an opacifier raw material. As a result, translucent opal glass was obtained by the melting of the mixed batch materials with a composition of more than 5% calcium phosphate glass at $1550^{\circ}C$ for 2 hrs, which had excellent optical properties for the diffuser of a LED lighting system with no dazzling from direct light by a high haze value exceeding 90% and a low parallel transmittance value of about 5%. For the thermal properties, the thermal expansion coefficient was found to be $5.6{\sim}5.9{\times}10^{-6}/^{\circ}C$ and the softening point was $874{\sim}884^{\circ}C$. In addition, good thermal properties such as good thermal shock resistance and feasibility for use with a general manufacturing process during the forming of glass tubes and bulbs were noted. Therefore, it is concluded that this translucent opal glass can be used as a glass diffuser material for LED lighting due to its high heat resistance and high durability as a replacement for a polycarbonate diffuser.

Determination and Verification of Flow Stress of Low-alloy Steel Using Cutting Test (절삭실험을 이용한 저합금강의 유동응력 결정 및 검증)

  • Ahn, Kwang-Woo;Kim, Dong-Hoo;Kim, Tae-Ho;Jeon, Eon-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.50-56
    • /
    • 2014
  • A technique based on the finite element method (FEM) is used in the simulation of metal cutting process. This offers the advantages of the prediction of the cutting force, the stresses, the temperature, the tool wear, and optimization of the cutting condition, the tool shape and the residual stress of the surface. However, the accuracy and reliability of prediction depend on the flow stress of the workpiece. There are various models which describe the relationship between the flow stress and the strain. The Johnson-Cook model is a well-known material model capable of doing this. Low-alloy steel is developed for a dry storage container for used nuclear fuel. Related to this, a process analysis of the plastic machining capability is necessary. For a plastic processing analysis of machining or forging, there are five parameters that must be input into the Johnson-Cook model in this paper. These are (1) the determination of the strain-hardening modulus and the strain hardening exponent through a room-temperature tensile test, (2) the determination of the thermal softening exponent through a high-temperature tensile test, (3) the determination of the cutting forces through an orthogonal cutting test at various cutting speeds, (4) the determination of the strain-rate hardening modulus comparing the orthogonal cutting test results with FEM results. (5) Finally, to validate the Johnson-Cook material parameters, a comparison of the room-temperature tensile test result with a quasi-static simulation using LS-Dyna is necessary.

Applicability Evaluation of Modified Overlay Model on the Cyclic Behavior of 316L Stainless Steel at Room Temperature (316L 스테인리스강의 상온 반복 거동에 대한 수정 다층 모델의 적용성 검토)

  • Lim Jae-Yong;Lee Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1603-1611
    • /
    • 2004
  • The validity of 'modified overlay model' to describe the cyclic behavior of annealed 316L stainless steel at room temperature was investigated. Material parameters(~f$_{i}$, m$_{i}$b, η, E) fur the model were obtained through constant strain amplitude test. The strain amplitude dependency of elastic limit and cyclic hardening, which were the characteristics of this model, were considered. Eight subelements were used to describe the nonlinearity of the hysteresis loops. The calculated hysteresis curve in each condition (0.5%, 0.7%, 0.9% train amplitude test) was very close to the experimental one. Two tests, incremental step test and 5-step test, ere performed to check the validity of 'modified overlay model'. The elastic limit was saturated to the one of the highest strain amplitudes of the block in the incremental step test, so it seemed to be Masing material at the stabilized block. Cyclic hardening was successfully described in the increasing sequence of the strain amplitude in 5-step test. But, the slight cyclic softening followed by higher strain amplitude would not be able to simulate by'modified overlay model'. However, the discrepancy induced was very small between the calculated hystereses and the experimental ones. In conclusion,'Modified overlay model'was proved to be appropriate in strain range of 0.35%~ 1.0%..0%.

Development of Hi-Quality Bedding Items by Multi-Finishing System of Pile Knitted Fabrics - Physical Properties of Textile according to Yarn Types - (파일 니트의 복합 후가공 기술에 의한 고품위 침장제품 개발에 관한 연구 - 원사 종류에 따른 원단의 물리적 특성 고찰을 중심으로 -)

  • Son, Eun Jong;Hwang, Young Gu;Park, Shin Woong;Choi, Yun Seon;Jeong, Sung Hoon
    • Textile Coloration and Finishing
    • /
    • v.29 no.4
    • /
    • pp.231-238
    • /
    • 2017
  • There are many kinds of elements and processes for the development of high quality bedding products like fiber, high-temperature heat treatment, dyeing process, tenter drying with softening agent and multiple final finishing. Especially we examined the mechanical characteristic properties of fabrics according to different yarn types. The critical physical properties of the yarn consisting the pile knitted fabrics were obtained for the development of the hi-grade bedding items. The material property and the exhaustion behaviour of the developed pile knitted fabrics composing of different yarns were measured and observed. The physical properties of the developed fabric were evaluated through the material property analysis of the yarn, the physical nature of the pile knitted fabrics and the data of the exhaustion performance; tensile strength, tensile elongation, tearing strength, cross section of yarn types, dyeing properties etc. And then high-class of bedding items were knitted using the double raschel machine to make the pile knitted fabrics.

Multi-Scale Heterogeneous Fracture Modeling of Asphalt Mixture Using Microfabric Distinct Element Approach

  • Kim Hyun-Wook;Buttler William G.
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.139-152
    • /
    • 2006
  • Many experimental and numerical approaches have been developed to evaluate paving materials and to predict pavement response and distress. Micromechanical simulation modeling is a technology that can reduce the number of physical tests required in material formulation and design and that can provide more details, e.g., the internal stress and strain state, and energy evolution and dissipation in simulated specimens with realistic microstructural features. A clustered distinct element modeling (DEM) approach was implemented In the two-dimensional particle flow software package (PFC-2D) to study the complex behavior observed in asphalt mixture fracturing. The relationship between continuous and discontinuous material properties was defined based on the potential energy approach. The theoretical relationship was validated with the uniform axial compression and cantilever beam model using two-dimensional plane strain and plane stress models. A bilinear cohesive displacement-softening model was implemented as an intrinsic interface and applied for both homogeneous and heterogeneous fracture modeling in order to simulate behavior in the fracture process zone and to simulate crack propagation. A disk-shaped compact tension test (DC(T)) with heterogeneous microstructure was simulated and compared with the experimental fracture test results to study Mode I fracture. The realistic arbitrary crack propagation including crack deflection, microcracking, crack face sliding, crack branching, and crack tip blunting could be represented in the fracture models. This micromechanical modeling approach represents the early developmental stages towards a 'virtual asphalt laboratory,' where simulations of laboratory tests and eventually field response and distress predictions can be made to enhance our understanding of pavement distress mechanisms, such its thermal fracture, reflective cracking, and fatigue crack growth.

  • PDF

Fabrication and Characterization of MgO-Al2O3-SiO2-ZrO2 Based Glass Ceramic (MgO-Al2O3-SiO2-ZrO2계 글라스 세라믹의 제조 및 특성 평가)

  • Yoon, Jea-Jung;Chun, Myoung-Pyo;Shin, Hyo Soon;Nahm, San
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.712-717
    • /
    • 2014
  • Glass ceramic has a high mechanical strength and low sintering temperature. So, it can be used as a thick film substrate or a high strength insulator. A series of glass ceramic samples based on MgO-$Al_2O_3-SiO_2-ZrO_2$ (MASZ) were prepared by melting at $1,600^{\circ}C$, roll-quenching and heat treatment at various temperatures from $900^{\circ}C$ to $1,400^{\circ}C$. Dependent on the heat treatment temperature used, glass ceramics with different crystal phases were obtained. Their nucleation behavior, microstructure and mechanical properties were investigated with differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Vicker's hardness testing machine. With increasing the heat treatment temperature of MASZ samples, their hardness and toughness initially increase and then reach the maximum points at $1,300^{\circ}C$, and begin to decrease at above this temperature, which is likely to be due to the softening of glass ceramics. As the content of $ZrO_2$ in MAS glass ceramics increases from 7.0 wt.% to 13 wt.%, Vicker's hardness and fracture toughness increase from $853Kg/mm^2$ to $878Kg/mm^2$ and $1.6MPa{\cdot}m^{1/2}$ to $2.4MPa{\cdot}m^{1/2}$ respectively, which seems to be related with the nucleation of elongated phases like fiber.