• Title/Summary/Keyword: soft-switching

Search Result 775, Processing Time 0.029 seconds

Soft switched Synchronous Boost Converter for Battery Dischargers

  • Dong, Zhiyong;Joung, Gyubum
    • International journal of advanced smart convergence
    • /
    • v.9 no.2
    • /
    • pp.105-113
    • /
    • 2020
  • In this paper, we proposed a soft switched synchronous boost converter, which can perform discharging the battery, is proposed. The proposed converter has low switching loss even at high frequency operation due to its soft switching characteristics. The converter operates in synchronous mode to minimize conduction loss because of changing the rectified diode to MOSFET with a low on resistance. In this reason, the efficiency of the converter can be greatly improved in high frequency. In this paper, the battery discharger with a switching frequency of 100 kHz, has been designed. The designed converter also simulated to prove the converter's characteristics of synchronous operation as well as soft switching operation. The simulation shows that the proposed converter always meets the soft switching conditions of turning on and off switching in the zero voltage and zero current states. Therefore, simulation results have confirmed that the proposed battery discharge had soft switching characteristics. The simulation results have confirmed that the proposed battery discharger had soft switching and synchronous operation characteristics.

Newton Method MPPT Control and Soft Switching Converter Simulation for Improving the Efficiency of PV System (태양광발전 시스템의 효율 개선을 위한 Newton Method MPPT제어 및 소프트 스위칭 컨버터 시뮬레이션)

  • Jang, In-Hyeok;Lee, Kang-Yeon;Choi, Youn-Ok;Cho, Geum-Bae
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.246-252
    • /
    • 2011
  • In this paper proposes the soft-switching boost converter and MPPT control for improving the efficiency of PV system. The proposed converter designed H-bridge auxiliary resonant circuit. By this circuit, all of the switching devices perform the soft switching under the zero voltage and zero current condition. Therefore the periodic switching losses can be decreased at turn on, off. The soft switching boost converter designs for 1.5[kW] solar module of the power conversion. Thus, this soft switching boost converter is simulated by MATLAB simulation using Newton-Method algorithm. As a result, Proposed Soft Switching Converter compared to a typical boost converter switching loss was reduced about 61%. And the overall system efficiency was verified to increase about 3.3%.

Soft-Switching T-Type Multilevel Inverter

  • Chen, Tianyu;Narimani, Mehdi
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1182-1192
    • /
    • 2019
  • In order to improve the conversion efficiency and mitigate the EMI problem of conventional hard-switching inverters, a new soft-switching DC-AC inverter with a compact structure and a low modulation complexity is proposed in this paper. In the proposed structure, resonant inductors are connected in series for the arm branches, and resonant capacitors are connected in parallel for the neutral point branches. With the help of resonant components, the proposed structure achieves zero-current switching on the arm branches and zero-voltage switching on the neutral point branches. When compared with state-of-art soft-switching topologies, the proposed topology does not need auxiliary switches. Moreover, the commutation algorithm to realize soft-switching can be easily implemented. In this paper, the principle of the resonant operation of the proposed soft-switching converter is presented and its performance is verified through simulation studies. The feasibility of the proposed inverter is evaluated experimentally with a 2.4-kW prototype.

A study on Three-Phase AC-DC Boost Converter using A Soft-Switching for discontinuous Mode (소프트 스윗치를 이용한 불연속 모드 3상 AC-DC 부스터 컨버터에 관한 연구)

  • Chun, J.H.;Kwak, D.G.;Kim, C.S.;Suh, K.Y.;Kwon, S.K.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.188-190
    • /
    • 1995
  • This paper describes a soft switching using discontinuous inductor current. The soft switching snubber circuit provides ZCS and ZVS for main switch. For high power applications, the input ractifier is fed from a three-phase ac source. The Conventional switching method is hard switching technics, because of the device turn off is ocurred in maximum reactor current. In this time, switching losses are maximised by the hard switching. In generally, soft switching technique has been adjusted with the snubber condenser in order to compensates for this losses. So, it was compared hard switching with soft switching which has proposed in this paper for switching losses, distortion factor by the simulation.

  • PDF

A Study on Soft Switching PWM Boost Converter using ZVT Technique (ZVT 기술을 이용한 soft switching DC-DC Boost 컨버터에 관한 연구)

  • 김춘삼
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.141-144
    • /
    • 2000
  • Recently DC-DC converters significantly increase the total losses as rising switching frequency. Traditional soft switching technique for reducing switching losses even increase voltage/current stress of switch. In this paper Resonant circuit for soft switching is connected in parallel with power stage and only operates just before turn-on of the main operates just before turn-on of the main switch, Therefore This doesn't affect the total circuit operation. ZNT-PWM converter designed with 170-260V input 4--V 5A output and 100kHz switching frequency is tested respectively with 500W. 1kW, 1.5kW, and 2kW loads.

  • PDF

Bidirectional Soft Switching Three-Phase Interleaved DC-DC Converter for a Wide Input Voltage Range (넓은 범위 입력전압에 소프트 스위칭이 가능한 양방향 인터리브드 DC-DC 컨버터)

  • Choi, Woo-Jin;Lee, Kyo-Beum;Joung, Gyu-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.313-320
    • /
    • 2015
  • This study deals with a bidirectional interleaved soft switching DC-DC converter for a wide range of input voltages. The proposed converter operates in complementary switching with the purpose of inductor size reduction and zero-voltage switching (ZVS) operation. The current ripple related to complementary switching is minimized by three-phase interleaved operation. The main characteristics of the proposed topology are its soft-switching method of operation and its simple structure. The soft-switching operation and the system efficiency of the proposed converter are verified by experimental results.

Three-Phase PWM Inverter and Rectifier with Two-Switch Auxiliary Resonant DC Link Snubber-Assisted

  • Nagai Shinichiro;Sato Shinji;Matsumoto Takayuki
    • Journal of Power Electronics
    • /
    • v.5 no.3
    • /
    • pp.233-239
    • /
    • 2005
  • In this paper, a new conceptual circuit configuration of a 3-phase voltage source, soft switching AC-DC-AC converter using an IGBT module, which has one ARCPL circuit and one ARDCL circuit, is presented. In actuality, the ARCPL circuit is applied in the 3-phase voltage source rectifier side, and the ARDCL circuit is in the inverter side. And more, each power semiconductor device has a novel clamp snubber circuit, which can save the power semiconductor device from voltage and current across each power device. The proposed soft switching circuits have only two active power semiconductor devices. These ARCPL and ARDCL circuits consist of fewer parts than the conventional soft switching circuit. Furthermore, the proposed 3-phase voltage source soft switching AC-DC-AC power conversion system needs no additional sensor for complete soft switching as compared with the conventional 3-phase voltage source AC-DC-AC power conversion system. In addition to this, these soft switching circuits operate only once in one sampling term. Therefore, the power conversion efficiency of the proposed AC-DC-AC converter system will get higher than a conventional soft switching converter system because of the reduced ARCPL and ARDCL circuit losses. The operation timing and terms for ARDCL and ARCPL circuits are calculated and controlled by the smoothing DC capacitor voltage and the output AC current. Using this control, the loss of the soft switching circuits are reduced owing to reduced resonant inductor current in ARCPL and ARDCL circuits as compared with the conventional controlled soft switching power conversion system. The operating performances of proposed soft switching AC-DC-AC converter treated here are evaluated on the basis of experimental results in a 50kVA setup in this paper. As a result of experiment on the 50kVA system, it was confirmed that the proposed circuit could reduce conduction noise below 10 MHz and improve the conversion efficiency from 88. 5% to 90.5%, when compared with the hard switching circuit.

ZVT PWM AC-DC Boost Converter with Active Snubber (능동 스너버를 갖는 ZVT PWM AC-DC 승압 컨버터)

  • Kim, Choon-Sam;Sung, Won-Ki;Lee, Jung-Moon;Choi, Chan-Sok;Kim, Soo-Hong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.214-220
    • /
    • 2008
  • Most of converter system could obtain almost unity power factor and make input current sinusoidal waveform, but they have many problems, such as electromagnetic interference and switching losses caused by switching noise in main switch. To solve these problems in hard switching PFC converter, soft switching converter using a resonant between capacitor and inductor is invented In this paper, advantages and disadvantages of conventional ZVT(Zero-Voltage-Transition) soft switching converter using a auxiliary resonant circuit is discussed. Then Improved ZVT soft switching converter proposed. This improved ZVT converter's operation principal, specific property, design scheme of main are described. From Simulation and experiment results of conventional ZVT soft switching and improved ZVT soft switching converter with active snubber, characteristics of the converter are confirmed.

Soft-Switched Synchronous Buck Converter for Battery Chargers

  • Dong, Zhiyong;Joung, Gyubum
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.138-146
    • /
    • 2019
  • In this paper, we proposed a soft-switched synchronous buck converter, which can perform charging the battery. The proposed converter has low switching loss even at high frequency operation due to its soft switching characteristics. The converter operates in synchronous mode to minimize conduction loss, resulting in small conduction loss, also. In this reason, the efficiency of the converter can be greatly improved even in high frequency. The size and weight of the converter can be reduced by high frequency operation of the converter. In this paper, we designed a battery charger with a switching frequency of 100 kHz. The designed converter also simulated to prove the converter's characteristics of synchronous operation as well as soft switching operation. The simulation shows that the proposed converter always meets the soft switching conditions of turning on and off switching in the zero voltage and zero current states. Therefore, simulation results have confirmed that the proposed battery charger had soft switching characteristics. The simulation results for transient response to charge current for the designed converter show that the converter responds to charge current commands quickly within 0.05 ms.

Feasibility Study of Tapped Inductor Filter Assisted Soft-Switching PWM DC-DC Power Converter

  • Moisseev S.;Sato S;Hamada S;Wakaoka M
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.231-234
    • /
    • 2003
  • This paper presents a novel high frequency transformer linked full-bridge type soft-switching phase-shift PWM control scheme DC-DC power converter, which can be used as power conditioner fur small-scale fuel cell power generation system. Using full-bridge soft-switching DC-DC converter topology makes possible to use low voltage high performance MOSFETs to achieve high efficiency of the power conditioner. A tapped inductor filter is implemented in the proposed soft-switching converter topology to achieve soft-switching PWM constant high frequency operation for a wide load variation range. to minimize circulating and idling currents without using additional resonant circuit and auxiliary power switching devices. The practical effectiveness of the proposed soft-switching DC-DC converter is verified in laboratory level experiment with 1 kW 100kHz breadboard setup using power MOSFETs. Actual efficiency of 94-96$\%$ is obtained for the wide load range

  • PDF