• Title/Summary/Keyword: soft storey structure

Search Result 14, Processing Time 0.021 seconds

Implication of rubber-steel bearing nonlinear models on soft storey structures

  • Saiful Islam, A.B.M.;Hussain, Raja Rizwan;Jumaat, Mohammed Zamin;Mahfuz ud Darain, Kh.
    • Computers and Concrete
    • /
    • v.13 no.5
    • /
    • pp.603-619
    • /
    • 2014
  • Soft storey buildings are characterised by having a storey that has a large amount of open space. This soft storey creates a major weak point during an earthquake. As the soft stories are typically associated with retail spaces and parking garages, they are often on the lower levels of tall building structures. Thus, when these stories collapse, the entire building can also collapse, causing serious structural damage that may render the structure completely unusable. The use of special soft storey is predominant in the tall building structures constructed by several local developers, making the issue important for local building structures. In this study, the effect of the incorporation of an isolator on the seismic behaviour of tall building structures is examined. The structures are subjected to earthquakes typical of the local city, and the isolator is incorporated with the appropriate isolator time period and damping ratio. A FEM-based computational relationship is proposed to increase the storey height so as to incorporate the isolator with the same time period and damping ratio for both a lead rubber bearing (LRB) and high-damping rubber bearing (HDRB). The study demonstrates that the values of the FEM-based structural design parameters are greatly reduced when the isolator is used. It is more beneficial to incorporate a LRB than a HDRB.

Seismic behavior of soft storey mid-rise steel frames with randomly distributed masonry infill

  • Quayyum, Shahriar;Alam, M. Shahria;Rteil, Ahmad
    • Steel and Composite Structures
    • /
    • v.14 no.6
    • /
    • pp.523-545
    • /
    • 2013
  • In this study, the effect of presence and distribution of masonry infill walls on the mid-rise steel frame structures having soft ground storey was evaluated by implementing finite element (FE) methods. Masonry infill walls were distributed randomly in the upper storey keeping the ground storey open without any infill walls, thus generating the worst case scenario for seismic events. It was observed from the analysis that there was an increase in the seismic design forces, moments and base shear in presence of randomly distributed masonry infill walls which underlines that these design values need to be amplified when designing a mid-rise soft ground storey steel frame with randomly distributed masonry infill. In addition, it was found that the overstrength related force modification factor increased and the ductility related force modification factor decreased with the increase in the amount of masonry infilled bays and panels. These must be accounted for in the design of mid-rise steel frames. Based on the FE analysis results on two mid-rise steel frames, design equations were proposed for determining the over strength and the ductility related force modification factors. However, it was recommended that these equations to be generalized for other steel frame structure systems based on an extensive analysis.

The M6.4 Lefkada 2003, Greece, earthquake: dynamic response of a 3-storey R/C structure on soft soil

  • Giarlelis, Christos;Lekka, Despina;Mylonakis, George;Karabalis, Dimitris L.
    • Earthquakes and Structures
    • /
    • v.2 no.3
    • /
    • pp.257-277
    • /
    • 2011
  • An evaluation is presented of the response of a 3-storey R/C structure during the destructive Lefkada earthquake of 14/08/2003. Key aspects of the event include: (1) the unusually strong levels of ground motion (PGA = 0.48 g, $SA_{max}$ = 2.2 g) recorded approximately 10 km from fault, in downtown Lefkada; (2) the surprisingly low structural damage in the area; (3) the very soft soil conditions ($V_{s,max}$ = 150 m/s). Structural, geotechnical and seismological aspects of the earthquake are discussed. The study focuses on a 3-storey building, an elongated structure of rectangular plan supported on strip footings, that suffered severe column damage in the longitudinal direction, yet minor damage in the transverse one. Detailed spectral and time-history analyses highlight the interplay of soil, foundation and superstructure in modifying seismic demand in the two orthogonal directions of the building. It is shown that soil-structure interaction may affect inelastic seismic response and alter the dynamic behavior even for relatively flexible systems such as the structure at hand.

Seismic damage estimation through measurable dynamic characteristics

  • Lakshmanan, N.;Raghuprasad, B.K.;Muthumani, K.;Gopalakrishnan, N.;Sreekala, R.
    • Computers and Concrete
    • /
    • v.4 no.3
    • /
    • pp.167-186
    • /
    • 2007
  • Ductility based design of reinforced concrete structures implicitly assumes certain damage under the action of a design basis earthquake. The damage undergone by a structure needs to be quantified, so as to assess the post-seismic reparability and functionality of the structure. The paper presents an analytical method of quantification and location of seismic damage, through system identification methods. It may be noted that soft ground storied buildings are the major casualties in any earthquake and hence the example structure is a soft or weak first storied one, whose seismic response and temporal variation of damage are computed using a non-linear dynamic analysis program (IDARC) and compared with a normal structure. Time period based damage identification model is used and suitably calibrated with classic damage models. Regenerated stiffness of the three degrees of freedom model (for the three storied frame) is used to locate the damage, both on-line as well as after the seismic event. Multi resolution analysis using wavelets is also used for localized damage identification for soft storey columns.

Overstrength factors for SDOF and MDOF systems with soil structure interaction

  • Aydemir, Muberra Eser;Aydemir, Cem
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1273-1289
    • /
    • 2016
  • This paper addresses the concept of lateral overstrength; the ratio of actual lateral strength to design base shear force, for both SDOF and MDOF systems considering soil structure interaction. Overstrength factors are obtained with inelastic time history analysis for SDOF systems for period range of 0.1-3.0 s, five different aspect ratios (h/r=1, 2, 3, 4, 5) and five levels of ductility (${\mu}$=2, 3, 4, 5, 6) considering soil structure interaction. Structural overstrength for MDOF systems are obtained with inelastic time history collapse analysis for sample 1, 3, 6, 9, 12 and 15 storey RC frame systems. In analyses, 64 ground motions recorded on different site conditions such as rock, stiff soil, soft soil and very soft soil are used. Also lateral overstrength ratios considering soil structure interaction are compared with those calculated for fixed-base cases.

Evaluation of numerical procedures to determine seismic response of structures under influence of soil-structure interaction

  • Tabatabaiefar, Hamid Reza;Fatahi, Behzad;Ghabraie, Kazem;Zhou, Wan-Huan
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.27-47
    • /
    • 2015
  • In this study, the accuracy and reliability of fully nonlinear method against equivalent linear method for dynamic analysis of soil-structure interaction is investigated comparing the predicted results of both numerical procedures with the results of experimental shaking table tests. An enhanced numerical soil-structure model has been developed which treats the behaviour of the soil and the structure with equal rigour. The soil-structural model comprises a 15 storey structural model resting on a soft soil inside a laminar soil container. The structural model was analysed under three different conditions: (i) fixed base model performing conventional time history dynamic analysis, (ii) flexible base model (considering full soil-structure interaction) conducting equivalent linear dynamic analysis, and (iii) flexible base model performing fully nonlinear dynamic analysis. The results of the above mentioned three cases in terms of lateral storey deflections and inter-storey drifts are determined and compared with the experimental results of shaking table tests. Comparing the experimental results with the numerical analysis predictions, it is noted that equivalent linear method of dynamic analysis underestimates the inelastic seismic response of mid-rise moment resisting building frames resting on soft soils in comparison to the fully nonlinear dynamic analysis method. Thus, inelastic design procedure, using equivalent linear method, cannot adequately guarantee the structural safety for mid-rise building frames resting on soft soils. However, results obtained from the fully nonlinear method of analysis fit the experimental results reasonably well. Therefore, this method is recommended to be used by practicing engineers.

Lateral seismic response of building frames considering dynamic soil-structure interaction effects

  • RezaTabatabaiefar, S. Hamid;Fatahi, Behzad;Samali, Bijan
    • Structural Engineering and Mechanics
    • /
    • v.45 no.3
    • /
    • pp.311-321
    • /
    • 2013
  • In this study, to have a better judgment on the structural performance, the effects of dynamic Soil-Structure Interaction (SSI) on seismic behaviour and lateral structural response of mid-rise moment resisting building frames are studied using Finite Difference Method. Three types of mid-rise structures, including 5, 10, and 15 storey buildings are selected in conjunction with three soil types with the shear wave velocities less than 600m/s, representing soil classes $C_e$, $D_e$ and $E_e$, according to Australian Standard AS 1170.4. The above mentioned frames have been analysed under two different boundary conditions: (i) fixed-base (no soil-structure interaction), and (ii) flexible-base (considering soil-structure interaction). The results of the analyses in terms of structural lateral displacements and drifts for the above mentioned boundary conditions have been compared and discussed. It is concluded that the dynamic soil-structure interaction plays a considerable role in seismic behaviour of mid-rise building frames including substantial increase in the lateral deflections and inter-storey drifts and changing the performance level of the structures from life safe to near collapse or total collapse. Thus, considering soil-structure interaction effects in the seismic design of mid-rise moment resisting building frames, particularly when resting on soft soil deposit, is essential.

Earthquake induced structural pounding between adjacent buildings with unequal heights considering soil-structure interactions

  • Jingcai Zhang;Chunwei Zhang
    • Earthquakes and Structures
    • /
    • v.24 no.3
    • /
    • pp.155-163
    • /
    • 2023
  • The purpose of this paper is to investigate the coupled effect of SSI and pounding on dynamic responses of unequal height adjacent buildings with insufficiently separation distance subjected to seismic loading. Numerical investigations were conducted to evaluate effect of the pounding coupling SSI on a Reinforced Concrete Frame Structure system constructed on different soil fields. Adjacent buildings with unequal height, including a 9-storey and a 3-storey reinforced concrete structure, were considered in numerical studies. Pounding force response, time-history and root-mean-square (RMS) of displacement and acceleration with different types of soil and separations were presented. The numerical results indicate that insufficient separation could lead to collisions and generate severe pounding force which could result in acceleration and displacement amplifications. SSI has significant influence of the seismic response of the structures, and higher pounding force were induced by floors with stiffer soil. SSI is reasonable neglected for a structure with a dense soil foundation, whereas SSI should be taken into consideration for dynamic analysis, especially for soft soil base.

Retrofit Yield Spectra-a practical device in seismic rehabilitation

  • Thermou, G.E.;Elnashai, A.S.;Pantazopoulou, S.J.
    • Earthquakes and Structures
    • /
    • v.3 no.2
    • /
    • pp.141-168
    • /
    • 2012
  • The Retrofit Yield Spectrum (RYS) is a new spectrum-based device that relates seismic demand of a retrofitted structure with the fundamental design parameters of the retrofit. This is obtained from superposition of Yield Point Spectra with design charts that summarize in pertinent spectrum-compatible coordinates the attributes of a number of alternative retrofit scenarios. Therefore, once the requirements for upgrading a given structure have been determined, the RYS enable direct insight of the sensitivity of the seismic response of the upgraded structure to the preliminary design decisions made while establishing the retrofit plan. By virtue of their spectrum-based origin, RYS are derived with reference to a single mode of structural vibration; a primary objective is to control the contribution of this mode in the retrofit design so as to produce a desirable distribution of damage at the ultimate limit state by removing soft storey formations and engaging the maximum number of structural members in deformation, in response to the input motion. Calculations are performed with reference to the yield-point, where secant stiffness is proportional to the flexural strength of reinforced concrete members. Derivation and use of the Retrofit Yield Spectra (RYS) refers to the seismic demand expressed either in terms of spectral acceleration, spectral displacement or interstory drift, at yield of the first storey. A reinforced concrete building that has been tested in full scale to a sequence of simulated earthquake excitations is used in the paper as a demonstration case study to examine the effectiveness of the proposed methodology.

Seismic response analysis of reinforced concrete frames including soil flexibility

  • Jayalekshmi, B.R.;Poojary, V.G. Deepthi;Venkataramana, Katta;Shivashankar, R.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.1
    • /
    • pp.1-16
    • /
    • 2013
  • The seismic response of RC space frame structures with isolated footing resting on a shallow soil stratum on rock is presented in this paper. Homogeneous soil stratum of different stiffness in the very soft to stiff range is considered. Soil, footing and super structure are considered to be the parts of an integral system. A finite element model of the integrated system is developed and subjected to scaled acceleration time histories recorded during two different real earthquakes. Dynamic analysis is performed using mode superposition method of transient analysis. A parametric study is conducted to investigate the effect of flexibility of soil in the dynamic behaviour of low-rise building frames. The time histories and Fourier spectra of roof displacement, base shear and structural response quantities of the space frame on compliant base are presented and compared with the fixed base condition. Results indicate that the incorporation of soil flexibility is required for the realistic estimate of structural seismic response especially for single storey structures resting on very soft soil.