• Title/Summary/Keyword: soft rock

Search Result 278, Processing Time 0.026 seconds

Geophysical and mechanical investigation of different environmental effects on a red-bed soft rock dam foundation

  • Liming Zhou;Yujie Li;Fagang Wang;Yang Liu
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.139-154
    • /
    • 2023
  • Red-bed soft rock is a common stratum and it is necessary to evaluate the mechanical properties and bearing capacity of red-bed soft rock mass affected by different environmental effects. This paper presents a complete procedure for evaluating the bearing capacity of red-bed soft rock by means of geophysical exploration and in-situ rock mechanics tests. Firstly, the thickness of surface loosened rock mass of red-bed soft rock was determined using geophysical prospecting method. Then, three environmental effects, including natural weathering effect, dry-wet cycling effect and concrete sealing effect, were considered. After each effect lasted for three months, in-situ rock mass mechanical tests were conducted. The test results show that the mechanical properties of rock mass considering the sealing effect of concrete were maintained. After considering the natural weathering effect, the mechanical parameters decrease to a certain extent. After considering the effect of dry-wet cycling, the decreases of mechanical parameters are the most significant. The test results confirm that the red-bed soft rock dam foundation rock mass will be significantly affected by various environmental effects. Therefore, combined with the mechanical test results, some useful implementations are proposed for the construction of a red-bed soft rock dam foundation.

An analytical model for assessing soft rock tunnel collapse risk and its engineering application

  • Xue, Yiguo;Li, Xin;Li, Guangkun;Qiu, Daohong;Gong, Huimin;Kong, Fanmeng
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.441-454
    • /
    • 2020
  • The tunnel collapse, large deformation of surrounding rock, water and mud inrush are the major geological disasters in soft rock tunnel construction. Among them, tunnel collapse has the most serious impact on tunnel construction. Current research backed theories have certain limitations in identifying the collapse risk of soft rock tunnels. Examining the Zhengwan high-speed railway tunnel, eight soft rock tunnel collapse influencing factors were selected, and the combination of indicator weights based on the analytic hierarchy process and entropy weighting methods was obtained. The results show that the groundwater condition and the integrity of the rock mass are the main influencing factors leading to a soft rock tunnel collapse. A comprehensive fuzzy evaluation model for the collapse risk of soft rock tunnels is being proposed, and the real-time collapse risk assessment of the Zhengwan tunnel is being carried out. The results obtained via the fuzzy evaluation model agree well with the actual situation. A tunnel section evaluated to have an extremely high collapse risk and experienced a local collapse during excavation, verifying the feasibility of the collapse risk evaluation model. The collapse risk evaluation model proposed in this paper has been demonstrated to be a promising and innovative method for the evaluation of the collapse risk of soft rock tunnels, leading to safer construction.

End Bearing Behavior of Drilled Shafts in Rock (암반에 근입된 현장타설말뚝의 선단지지거동)

  • Kwon, Oh-Sung;Kim, Kyung-Taek;Lee, Young-Chul;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.603-610
    • /
    • 2005
  • The end bearing behavior of piles socketed in weathered/soft rock is generally dependent upon the mass conditions of rock with fractures rather than the strength of intact rock. However, there are few available data and little guidance in the prediction of the end bearing capacity of drilled shafts socketed in weathered/soft rock, considering rock mass weathering. Therefore, a database of 13 load tests was constructed first, and new empirical relationships between the base reaction modulus of piles in rock and rock mass properties were developed. No correlation was found between the compressive strengths of intact rock and the base reaction modulus of weathered/soft rock. The ground investigation data regarding the rock mass conditions(e.g. Em, Eur, RMR, RQD) was found to be highly correlated with the base reaction modulus, showing the coefficients of correlation greather than 0.7 in most cases. Additionally, the applicability of existing methods for the end bearing capacity of piles in rock was verified by comparison with the field test data.

  • PDF

Incompatible deformation and damage evolution of mixed strata specimens containing a circular hole

  • Yang, Shuo;Li, Yuanhai;Chen, Miao;Liu, Jinshan
    • Geomechanics and Engineering
    • /
    • v.20 no.5
    • /
    • pp.461-474
    • /
    • 2020
  • Analysing the incompatible deformation and damage evolution around the tunnels in mixed strata is significant for evaluating the tunnel stability, as well as the interaction between the support system and the surrounding rock mass. To investigate this issue, confined compression tests were conducted on upper-soft and lower-hard strata specimens containing a circular hole using a rock testing system, the physical mechanical properties were then investigated. Then, the incompatible deformation and failure modes of the specimens were analysed based on the digital speckle correlation method (DSCM) and Acoustic Emission (AE) data. Finally, numerical simulations were conducted to explore the damage evolution of the mixed strata. The results indicate that at low inclination angles, the deformation and v-shaped notches inside the hole are controlled by the structure plane. Progressive spalling failure occurs at the sidewalls along the structure plane in soft rock. But the transmission of the loading force between the soft rock and hard rock are different in local. At high inclination angles, v-shaped notches are approximately perpendicular to the structure plane, and the soft and hard rock bear common loads. Incompatible deformation between the soft rock and hard rock controls the failure process. At inclination angles of 0°, 30° and 90°, incompatible deformations are closely related to rock damage. At 60°, incompatible deformations and rock damage are discordant due that the soft rock and hard rock alternately bears the major loads during the failure process. The failure trend and modes of the numerical results agree very well with those observed in the experimental results. As the inclination angles increase, the proportion of the shear or tensile damage exhibits a nonlinear increase or decrease, suggesting that the inclination angle of mixed strata may promote shear damage and restrain tensile damage.

Case Study of Ground Behavior Analysis of Soft and Hard Rock Layers with Fractured Zones in Deep Excavation (깊은 굴착에서 파쇄대를 갖는 연암 및 경암 지층의 지반 거동분석 사례연구)

  • Kim, Sung-Wook;Han, Byung-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.521-532
    • /
    • 2008
  • Supporting system design and construction management for the soft and hard rock layers with fractured zones are very important theme for the safety of temporary retaining wall, surrounding ground and structures in the urban deep excavation for the construction of subway, railway, building etc. The prevailing design method of supporting system for the soft and hard rock layers in the deep excavation is mostly carrying out by simplification without proper consideration for the characteristic of rock discontinuities. Therefore the behaviors of rock discontinuities and fractured zones dominate the whole safety of excavation work in the real construction stage, serious disaster due to the failure of temporary retaining wall can be induced in the case of developing large deformations in the ground and large axial forces in the supporting system. This paper introduces examples of deep excavation where the soft and hard rock layers with fractured zones were designed to be supported by shotcrete and rock bolt, deformations of corresponding ground and supporting systems in the construction period and increments of axial force in the upper earth anchors and strut due to the these deformations were investigated through detailed analysis of measurement data, the results were so used for the management of consecutive construction that led to the safe and economical completion of excavation work. The effort of this article aims to improve and develop the technique of design and construction in the coming projects having similar ground condition and supporting method.

  • PDF

Rock Mass Classification of Tertiary Unconsolidated Sedimentary Rocks In Pohang Area (포항지역 신생대 제3기 미고결 퇴적층의 암반분류)

  • Kim, Sung-Wook;Choi, Eun-Kyeong;Lee, Yung-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.999-1008
    • /
    • 2009
  • A series of sedimentary rocks which are formed in the Tertiary are distributed around Samcheok(Samcheok-Pukpyoung basin), Younghae(Younghae basin), Pohang(Pohang basin), Gyeongju(Yangnam basin), Ulsan(Ulsan basin), Jeju(Seogyuipo formation) in the southern region of the Korean Peninsula. This study concerned with geological, geophysical, geotechnical properties of the unconsolidated rocks in the Pohang area. A consolidated rocks are classified as hard rock - soft rock - weathered rock - residual soil follows in degree of weathering. But unconsolidated rocks has soil properties as well as rock's at the same time. The results of field excursion, boring, borehole-logging, rock testing, geophysical survey, laboratory test are soft rock range, but the durability of the rock until the residual soil from the weathered rock. We accomplished the rock mass classification of the unconsolidated rocks.

  • PDF

Electrochemical modification of the porosity and zeta potential of montmorillonitic soft rock

  • Wang, Dong;Kang, Tianhe;Han, Wenmei;Liu, Zhiping;Chai, Zhaoyun
    • Geomechanics and Engineering
    • /
    • v.2 no.3
    • /
    • pp.191-202
    • /
    • 2010
  • The porosity (including the specific surface area and pore volume-diameter distribution) of montmorillonitic soft rock (MSR) was studied experimentally with an electrochemical treatment, based on which the change in porosity was further analyzed from the perspective of its electrokinetic potential (${\zeta}$ potential) and the isoelectric point of the electric double layer on the surface of the soft rock particles. The variation between the ${\zeta}$ potential and porosity was summarized, and used to demonstrate that the properties of softening, degradation in water, swelling, and disintegration of MSR can be modified by electrochemical treatment. The following conclusions were drawn. The specific surface area and total pore volume decreased, whereas the average pore diameter increased after electrochemical modification. The reduction in the specific surface area indicates a reduction in the dispersibility and swelling-shrinking of the clay minerals. After modification, the ${\zeta}$ potential of the soft rock was positive in the anodic zone, there was no isoelectric point, and the rock had lost its properties of softening, degradation in water, swelling, and disintegration. The ${\zeta}$ potential increased in the intermediate and cathodic zones, the isoelectric point was reduced or unchanged, and the rock properties are reduced. When the ${\zeta}$ potential is increased, the specific surface area and the total pore volume were reduced according to the negative exponent law, and the average pore diameter increased according to the exponent law.

Performance of Rock-socketed Drilled Shafts in Deep Soft Clay Deposits

  • Kim, Myung-Hak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.409-429
    • /
    • 2006
  • In designing rock-socketed drilled shaft, bearing capacity evaluation is very important because the maximum values of base and side resistance are not generally mobilized at the same value of displacement, FHWA and AASHTO code suggest different ultimate bearing capacity formular according to rock type and shaft settlement. In domestic code suggest base resistance and side resistance can be added on condition that after confirming the result of field load test with axial load transfer test. This paper shows that static load test and hi-directional load test result analysis of deep rock-socketed drilled shaft in three different sites. Load-settlement curve, t-z, and q-w curve in rock-socketed part were calculated and compared. t-z curve in weathered and soft rock showed no deflection softening behavior in pretty large strain (about 2-3% of diameter). Ultimate resistance could be the summation of side resistance and base resistance in rock-socketed drilled shaft in domestic sites.

  • PDF

Measurement of Soft Ground Foundation and Rock Slope Behavior Using Spiral Bolt Strain Gauge (스파이럴 볼트 변형률계를 이용한 연약지반기초 및 암반사면 거동 계측)

  • Kang, Seong-Seung;Hirata, Atsuo;Jeong, Seong-Hoi;Lee, Woo-Ram;Je, Dong-Kwang;Kim, Dae-Hyeon
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.105-111
    • /
    • 2010
  • This study is to consider applicability of spiral bolt strain gauge as an instrument measuring behavior of soft ground foundation and rock slope. When the instrument was installed on the ground, it can be useful to identify the state of ground behavior because it has the characteristics of flexibility, as well as to apply the ground reinforcement because it has higher pull-out resistance to the ground. From the measurement of behavior to soft ground foundation, the strain shows a stable state in the beginning, then was observed significant change in the upper and the middle of spiral bolt strain gauge after 400 days. This is analyzed that ground loosening, which is due to occurred frequent earthquake of magnitude 1~2 with increased rainfall, lead to the instability of the ground. From the measurement of behavior to rock slope, the strain shows a stable state with very little change in a period of 0~50 days and the biggest strain at 4.2 m (P6) in a period of 50~100 days, then other places except P6 was maintained at a stable state in a period of 100~160 days. The reason is analyzed because that blasting for excavated limestone surrounding was affected to the largest at P6. However, based on the size of strain change by behavior of the soft ground foundation and rock slope, it is considered that the present condition are not effected on stability of retaining structure and rock slope. In conclusion, the proposed spiral bolt strain gauge can be useful to measure behavior of soft ground foundation and rock slope, and also to be measured behavior as well as reinforcement of the target ground.

Topographic Relief and Denudation Resistance by Geologic Type in the Southern Korean Peninsula (한반도 남부의 지질 유형별 지형 기복과 삭박 저항력)

  • Lee, Gwang-Ryul;Park, Chung-Sun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • This study tried to reveal relative surface denudation resistance and ranking by geologic types in the Southern Korean Peninsula using an 1:250,000 digital geologic map and ASTER GDEM. Among rock types such as igneous, sedimentary and metamorphic rocks, metamorphic rock showed the greatest resistance to surface denudation. The most resistant rock to surface denudation by geologic periods (e.g., the Precambrian, Paleozoic, Mesozoic and Cenozoic) was found from the Precambrian. Among the major tectonic settings in the Southern Korean Peninsula such as the Gyeonggi massif, Okcheon belt, Yeongnam massif, Gyeongsang basin and Pohang basin, the Okcheon belt indicated the greatest resistance. The most and least resistant rocks from the representative nine rocks in the Southern Korean Peninsula were Paleozoic limestone, and Cretaceous sedimentary rock and Cenozoic sedimentary rock, respectively. This study suggests that Paleozoic limestone, Cretaceous volcanic rock, Paleozoic sedimentary rock and Precambrian gneiss can be regarded as hard rocks with high elevation, steep slope and complicated relief, while soft rocks with low elevation, gentle slope and simple relief are Jurassic granite, Cretaceous sedimentary rock and Cenozoic sedimentary rock.