• Title/Summary/Keyword: soft mechanism

Search Result 329, Processing Time 0.023 seconds

Cryosurgery in the Treatment of Keloids (Cryosurgery를 이용(利用)한 Keloid의 치료(治療))

  • Jung, Young-Sik;Choi, See-Ho;Seul, Jung-Hyun;Lee, Tae-Sook
    • Journal of Yeungnam Medical Science
    • /
    • v.2 no.1
    • /
    • pp.23-30
    • /
    • 1985
  • Keloids are abnormally healed skin wounds that develop in the subpapillary layer of the dermis. They are a lesion with wide, raised and deep scars. They exceed the original dimensions of the wound and grow mounds upon mounds of collagen in a pseudotumor fashion. Their treatment may take several forms such as surgery, intralesional injection of steroid, compression, superficial irradiation, and combination therapy. However, absolute method is nothing until now. Recently, the cryosurgery shows relatively good effect in treatment, so we tried the clinical experience with cryosurgery in the treatment of keloids. Material and methods: During the past 2 years, we treated 20 individuals of the keloids with severe itching and pain. The age ranged from 5 to 45 years old. Only 6 cases were biopsied before and after cryotherapy. The cryosurgery set we used was Toitu model CR 201 $N_2O$ gas (tip temperature is $-80^{\circ}C$) and was applied directly on the lesion about 4 to 5 minutes with slight compression. After cryosurgery in keloids, the following results were obtained: 1. It is both quick and easy method. 2. It causes little or no pain and no loss of blood. 3. Integumentary normalization is rapid. The new scar tissue is smaller, and more elastic and soft. 4. The pain, itching and paresthesia commonly associated with keloid is usually disappeared. 5. Other treatment can be used after cryosurgery. 6. Histologic picture after cryosurgery is similar with the result of steroid injection. 7. The mechanism of the cryosurgery in keloids is the result of the direct tissue destroying action and cryoimmunologic reaction.

  • PDF

Evaluation of Lateral Earth Pressure on Buried Pipes in Soft Ground Undergoing Lateral Movement (측방유동지반속 지중매설관에 작용하는 토압식 산정)

  • 홍원표;한중근;배태수
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.55-65
    • /
    • 2002
  • Model tests were performed to investigate the mechanism of lateral earth pressure on a buried pipe, which was installed in a plastic flowing soil mass undergoing lateral movement. On the basis of failure mode tests, the equation of lateral earth pressure to apply Maxwell's visco-elastic model was proposed to consider the soil deformation velocity. Through a series of model tests of differential soil deformation velocity, lateral earth pressure of theoretical equation was compared with experimental results. When lateral soil movement was raised, the lateral earth pressure acting on buried pipe increases linearly with the soil deformation velocity. It shows that the lateral earth pressure on buried pipe is largely affected by soil deformation velocity. When plastic soil movement was raised, lateral earth pressure predicted by theoretical equation showed good agreement with experimental results. Also, coefficient of viscosity by theoretical equation had a good agreement with direct shear test results.

Comparative Analysis of Strengthening with Respect to Microstructural Evolution for 0.2 Carbon DP, TRIP, Q&P Steels

  • Jin, Jong-Won;Park, Yeong-Do;Nam, Dae-Geun;Lee, Seung-Bok;Kim, Sung-Il;Kang, Nam-Hyun;Cho, Kyung-Mox
    • Korean Journal of Materials Research
    • /
    • v.19 no.6
    • /
    • pp.293-299
    • /
    • 2009
  • The microstructures and mechanical properties of Dual Phase (DP), Transformation-Induced Plasticity (TRIP), and Quenching & Partitioning (Q&P) steels were investigated in order to define the strengthening mechanism of 0.2 C steel. An intercritical annealing between Ac1 and Ac3 was conducted to produce DP and TRIP steel, followed by quenching the DP and TRIP steel being quenched at to room temperature and by the TRIP steel being austemperingaustempered-air cooling cooled the steel toat room temperature, respectively. The Q&P steel was produced from full austenization, followed by quenching to the temperature between $M_s$ and $M_f$, and then enriching the carbon to stabilize the austenite throughout the heat treatment. For the DP and TRIP steels, as the intercritical annealing temperature increased, the tensile strength increased and the elongation decreased. The strength variation was due to the amount of hard phases, i.e., martensite and bainite, respectively in the DP and TRIP steels. It was also found that the elongation also decreased with the amount of soft ferrite in the DP and TRIP steels and with the amount of the that was retained in the austenite phasein the TRIP steel, respectively for the DP and TRIP steels. For the Q&P steel, as the partitioning time increased, the elongation and the tensile strength increased slightly. This was due to the stabilized austenite that was enriched with carbon, even when the amount of retained austenite decreased as the partitioning time increased from 30 seconds to 100 seconds.

Numerical and experimental study of multi-bench retained excavations

  • Zheng, Gang;Nie, Dongqing;Diao, Yu;Liu, Jie;Cheng, Xuesong
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.715-742
    • /
    • 2017
  • Earth berms are often left in place to support retaining walls or piles in order to eliminate horizontal struts in excavations of soft soil areas. However, if the excavation depth is relatively large, an earth berm-supported retaining system may not be applicable and could be replaced by a multi-bench retaining system. However, studies on multi-bench retaining systems are limited. The goal of this investigation is to study the deformation characteristics, internal forces and interaction mechanisms of the retaining structures in a multi-bench retaining system and the failure modes of this retaining system. Therefore, a series of model tests of a two-bench retaining system was designed and conducted, and corresponding finite difference simulations were developed to back-analyze the model tests and for further analysis. The tests and numerical results show that the distance between the two rows of retaining piles (bench width) and their embedded lengths can significantly influence the relative movement between the piles; this relative movement determines the horizontal stress distribution in the soil between the two rows of piles (i.e., the bench zone) and thus determines the bending moments in the retaining piles. As the bench width increases, the deformations and bending moments in the retaining piles decrease, while the excavation stability increases. If the second retaining piles are longer than a certain length, they will experience a larger bending moment than the first retaining piles and become the primary retaining structure. In addition, for varying bench widths, the slip surface formation differs, and the failure modes of two-bench retained excavations can be divided into three types: integrated failure, interactive failure and disconnected failure.

An Analysis of Mechanism of Auto-Sensing Breaker's Automatic Impact (지능형 브레이커의 자동타격 메카니즘 분석)

  • Park, Sung-Su;Noh, Dae-Kyung;Lee, Dae-Hee;Lee, Geun-Ho;Kang, Young-Ky;Cho, Jae-Sang;Jang, Joo-sup
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.4
    • /
    • pp.31-42
    • /
    • 2016
  • This study aims to identify the core technology for the automatic impact of the auto-sensing breaker that is one of the construction machinery which do not have a notable development success case yet in Korea. The study has been carried out as follows. Firstly, an analysis model was developed after determining the interconnection of pressure receiving area, opening area and port. And then, a simulation of situation that hard rock and soft rock are mixed was carried out to verify if it is possible to switch between long impact mode and short impact mode continuously. Lastly, the dynamic behavior of automatic control valve induced by the change of impact mode was analyzed based on the analysis result to decipher the core principle of automatic impact control.

A Study on Reliability Prediction of System with Degrading Performance Parameter (열화되는 성능 파라메터를 가지는 시스템의 신뢰성 예측에 관한 연구)

  • Kim, Yon Soo;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.142-148
    • /
    • 2015
  • Due to advancements in technology and manufacturing capability, it is not uncommon that life tests yield no or few failures at low stress levels. In these situations it is difficult to analyse lifetime data and make meaningful inferences about product or system reliability. For some products or systems whose performance characteristics degrade over time, a failure is said to have occurred when a performance characteristic crosses a critical threshold. The measurements of the degradation characteristic contain much useful and credible information about product or system reliability. Degradation measurements of the performance characteristics of an unfailed unit at different times can directly relate reliability measures to physical characteristics. Reliability prediction based on physical performance measures can be an efficient and alternative method to estimate for some highly reliable parts or systems. If the degradation process and the distance between the last measurement and a specified threshold can be established, the remaining useful life is predicted in advance. In turn, this prediction leads to just in time maintenance decision to protect systems. In this paper, we describe techniques for mapping product or system which has degrading performance parameter to the associated classical reliability measures in the performance domain. This paper described a general modeling and analysis procedure for reliability prediction based on one dominant degradation performance characteristic considering pseudo degradation performance life trend model. This pseudo degradation trend model is based on probability modeling of a failure mechanism degradation trend and comparison of a projected distribution to pre-defined critical soft failure point in time or cycle.

Avulsion injuries: an update on radiologic findings

  • Choi, Changwon;Lee, Sun Joo;Choo, Hye Jung;Lee, In Sook;Kim, Sung Kwan
    • Journal of Yeungnam Medical Science
    • /
    • v.38 no.4
    • /
    • pp.289-307
    • /
    • 2021
  • Avulsion injuries result from the application of a tensile force to a musculoskeletal unit or ligament. Although injuries tend to occur more commonly in skeletally immature populations due to the weakness of their apophysis, adults may also be subject to avulsion fractures, particularly those with osteoporotic bones. The most common sites of avulsion injuries in adolescents and children are apophyses of the pelvis and knee. In adults, avulsion injuries commonly occur within the tendon due to underlying degeneration or tendinosis. However, any location can be involved in avulsion injuries. Radiography is the first imaging modality to diagnose avulsion injury, although advanced imaging modalities are occasionally required to identify subtle lesions or to fully delineate the extent of the injury. Ultrasonography has a high spatial resolution with a dynamic assessment potential and allows the comparison of a bone avulsion with the opposite side. Computed tomography is more sensitive for depicting a tiny osseous fragment located adjacent to the expected attachment site of a ligament, tendon, or capsule. Moreover, magnetic resonance imaging is the best imaging modality for the evaluation of soft tissue abnormalities, especially the affected muscles, tendons, and ligaments. Acute avulsion injuries usually manifest as avulsed bone fragments. In contrast, chronic injuries can easily mimic other disease processes, such as infections or neoplasms. Therefore, recognizing the vulnerable sites and characteristic imaging features of avulsion fractures would be helpful in ensuring accurate diagnosis and appropriate patient management. To this end, familiarity with musculoskeletal anatomy and mechanism of injury is necessary.

Development of hybrid interfacial structure on wet surfaces for robotic gripper applications (젖은 표면 파지용 로봇 그리퍼 응용을 위한 하이브리드 계면 구조 개발)

  • Kim, Da Wan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.685-690
    • /
    • 2022
  • Recent research on soft adhesives has sought to understand in depth how their chemical or mechanical structures interact strongly with living tissues. The aim is to optimally address the unmet needs of patients with acute or chronic diseases. Synergy adhesion, which includes both electrostatic (hydrogen bonds) and mechanical interactions (capillary stress), appears to be effective in overcoming challenges related to long-term unstable bonds to wet surfaces. Here, we report electrostatic and mechanically synergistic mechanisms of adhesion without chemical residues. To infer the mechanism, a thermodynamic model based on custom combination adhesives has been proposed. The model supported experimental results that thermodynamically controlled swelling of hydrogels embedded in elastomeric structures improves biofluidic insensitive on-site adhesion to wet surfaces and improves detachment without chemical residues in the direction of peeling.

Characterization of Composite Ground Reinforced with Recycled-Aggregate Porous Concrete Pile (RAPP) (순환골재 다공질 콘크리트말뚝(RAPP)에 의해 보강된 복합지반의 거동 특성)

  • You, Seung-Kyong;Kim, Se-Won;Lee, Chul-Ho;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.11
    • /
    • pp.117-130
    • /
    • 2009
  • In this paper, a series of laboratory chamber tests were carried out to evaluate the applicability of a porous concrete pile fabricated with recycled aggregates (RAPP) for the soft ground improvement. While performing the laboratory chamber tests for the RAPP, the surface settlement, excess pore pressure and vertical stress distribution with time were compared with those of SCP provided by You (2003) under the same experimental condition. In addition, the experimental results were compared with the numerical simulation using ABAQUS in this study. The results show that the settlement reduction is significantly enhanced due to the stress-sharing mechanism between the RAPP and soil formation by stress concentration on the RAPP. Furthermore, the comparison of consolidation rate shows that the RAPP can accelerate consolidation as well, which behaves as a vertical drain.

Evaluation of the Roadbed Behavior During Tilting-train Operation in Curved Track Using Numerical Analysis (틸팅차량의 곡선부 운행시 수치해석을 이용한 노반거동 평가)

  • Jeon, Sang-Soo;Eum, Gi-Young;Kim, Jae-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.115-126
    • /
    • 2007
  • The tilting-train is very attractive to the railroad users in the world because it runs with high speed in curved track using pre-existing infrastructure. The tilting-train has a unique allowable speed and mechanism expecially in curved track. Therefore, it should be evaluated in terms of the stability of the train operation and roadbed. In this study, when the tilting-train is being operated with the allowable speed, the behavior of the roadbed is evaluated by examining the settlement and bearing capacity of the roadbed. Additionally, the stability of the roadbed is estimated in the condition of soft roadbed influenced by the weather effects and cyclic train loading. The numerical results show that the roadbed settlements satisfy the allowable settlement when Young's moduli of the upper roadbed and in-situ soil are more than $2,300t/m^2\;and\;3,300t/m^2$, respectively, in the continuous welded rail (CWR) and $3,800t/m^2\;and\;4,600t/m^2$, respectively, in the rail joint.