• Title/Summary/Keyword: soft mechanism

Search Result 329, Processing Time 0.021 seconds

Isolation and Characterization of Plant Pathogen that Cause Soft Rot Disease in Napa Cabbage (배추무름병 원인균 분리 및 특성 연구)

  • Kwon, Young-Hee;Yoo, Ah-Young;Yu, Jong-Earn;Kang, Ho-Young
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1177-1182
    • /
    • 2009
  • In order to establish in vitro infection model for research of plant pathogen based on tissue softening disease in napa cabbage, eighty independent bacterial strains were isolated from the softened napa cabbage tissues. Eight bacterial isolates were primarily screened with the generation of reproducible tissue softening disease to fresh napa cabbages within 24${\sim}$48 hours after inoculation. Through various microbiological biochemical and morphological examinations, three Gram (-) isolates which harbor independent biological properties were finally chosen, and named as RBI, RB2 and RB6. Collective results obtained from API 20E test and analyses of VITEK 2 COMPACT and nucleotide sequences of 165 rRNA of each isolate proposed that isolates RBI and RB2 are close to the Erwinia carotovora subsp. odorifera, and RB6 is close to the Erwinia carotovora subsp. carotovora. These isolates grew optimally at $30^{\circ}C$ with neutral pH culture condition. The isolates caused softening tissue disease with dose-dependent manner regardless of pre-surface damages of napa cabbage. Minimum dose to cause soft rot disease for RBI, RB2 or RB6 were $8.0{\times}10^8$ CFU/mt $10^9$ CFU/ml or $4.7{\times}10^6$ CFU/ml respectively. These isolates caused tissue softening disease to eggplant, paprika and napa cabbage out of 14 different tested vegetables, indicating that these isolates damages specific plant tissues. The bacterial isolates obtained in this research and in vitro plant infection model will be adapted in the understanding of the mechanism of pathogenesis by plant pathogen.

Anti-cancer Effects of Costunolide in Estrogen Receptor Positive MCF-7 Breast Cancer Cells (에스트로겐 수용체 양성 MCF-7 유방암 세포주에 대한 costunolide의 항암효과)

  • Kim, Woon Ji;Choi, Youn Kyung;Woo, Sang Mi;Park, Nam Gyu;Jung, Hye In;Kim, Yong Gook;Shin, Yong Cheol;Ko, Seong Gyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.3
    • /
    • pp.306-312
    • /
    • 2013
  • Costunolide ($C_{15}H_{20}O_2$) is a sesquiterpene lactone that was isolated from many herbal medicines and it has diverse effects (anti-viral, anti-fungal, and anti-inflammatory) according to previous reports. However, the anti-cancer effects of Costunolide and its mechanism of actions are not well known in estrogen receptor positive breast cancer. In this study, we observed that costunolide suppresses cell growth in estrogen receptor positive MCF-7 breast cancer cells as shown by MTT assay and soft agar colony formation assay. To examine the mechanism by which costunolide inhibits MCF-7 cell growth, we performed FACS analysis. We found that costunolide induced G2/M and S cell cycle arrest, and regulated cycle-related protein expression. In addition, costunolide inhibited ERK signaling pathway and induced autophagy. Therefore, costunolide might be a good and useful chemotherapy agent for estrogen receptor positive breast cancer patients.

A Retrospective Analysis of 101 Cases of Distal Digital Replantation (수지 첨부 재접합술 101예의 후향적 분석)

  • Oh, Se-Kwan;Kim, Kyung-Chul;Lee, Gi-Jun;Kim, Joo-Sung;Mun, Hyun-Sik;Woo, Sang-Hyun
    • Archives of Reconstructive Microsurgery
    • /
    • v.15 no.1
    • /
    • pp.10-16
    • /
    • 2006
  • We retrospectively evaluated our results of replantations of distal digital amputations and analyzed the factors deterrent to the survival of replanted digits. From January 2004 to 2005 June, we performed 101 cases of replantations following complete amputations at or distal to interphalangeal joint level. The study included 98 patients with a mean age of 35.6 years (range 1 to 63 years). Amputation level correlated to zone I (distal to the lunula)in 47 cases and zone II (lunula to distal interphalangeal joint) in 54 cases according to Yamano's classification. According to the mechanism of amputation, 24 cases (22.9%) suffered from guillotine type injury, 27 cases (27.1 %) from avulsion type injury and 50 cases (50%) from crush type injury. In all cases, a single arterial anastomosis was performed. Venous anastomosis on either volar or dorsal side was performed in 12 cases of amputation in zone II. Salvage procedure for venous drainage was performed in 98 cases. The mean duration of salvage procedures was 5.9 days (ranging from 4 to 14 days). Successful replantation was achieved in 96 cases (95.1%), which included 93.7% cases in zone I amputations and 96.3% cases in zone II amputations. A single venous anastomosis was performed in 12 cases of amputation in zone II. All of them survived completely. Among the 5 cases that failed to survive, 3 cases were related with avulsion injury in zone I. Initial mechanism of injury determines the survival rate of amputated parts as it is directly related with the status of vessels and soft tissues. Meticulous precaution during the salvage procedure may affect the overall survival rate of distal digital replantations.

  • PDF

Comparative Study of Spiral Oblique Retinacular Ligament Reconstruction Techniques Using Either a Lateral Band or a Tendon Graft

  • Oh, Jae Yun;Kim, Jin Soo;Lee, Dong Chul;Yang, Jae Won;Ki, Sae Hwi;Jeon, Byung Joon;Roh, Si Young
    • Archives of Plastic Surgery
    • /
    • v.40 no.6
    • /
    • pp.773-778
    • /
    • 2013
  • Background In the management of mallet deformities, oblique retinacular ligament (ORL) reconstruction provides a mechanism for automatic distal interphalangeal (DIP) joint extension upon active proximal interphalangeal joint extension. The two variants of ORL reconstruction utilize either the lateral band or a free tendon graft. This study aims to compare these two surgical techniques and to assess any differences in functional outcome. As a secondary measure, the Mitek bone anchor and pull-in suture methods are compared. Methods A single-institutional retrospective review of ORL reconstruction was performed. The standard patient demographics, injury mechanism, type of ORL reconstruction, and pre/postoperative degree of extension lag were collected for the 27 cases identified. The cases were divided into lateral band (group A, n=15) and free tendon graft groups (group B, n=12). Group B was subdivided into the pull-in suture technique (B-I) and the Mitek bone anchor method (B-II). Results Overall, ORL reconstructions had improved the mean DIP extension lag by $10^{\circ}$ (P=0.027). Neither the reconstructive technique choice nor bone fixation method identified any statistically meaningful difference in functional outcome (P=0.51 and P=0.83, respectively). Soft-tissue injury was associated with $30.8^{\circ}$ of improvement in the extension lag. The most common complications were tendon adhesion and rupture. Conclusions The choice of the ORL reconstructive technique or the bone anchor method did not influence the primary functional outcome of extension lag in this study. Both lateral band and free tendon graft ORL reconstructions are valid treatment methods in the management of chronic mallet deformity.

Formation Mechanisms of Sn Oxide Films on Probe Pins Contacted with Pb-Free Solder Bumps (무연솔더 범프 접촉 탐침 핀의 Sn 산화막 형성 기제)

  • Bae, Kyoo-Sik
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.545-551
    • /
    • 2012
  • In semiconductor manufacturing, the circuit integrity of packaged BGA devices is tested by measuring electrical resistance using test sockets. Test sockets have been reported to often fail earlier than the expected life-time due to high contact resistance. This has been attributed to the formation of Sn oxide films on the Au coating layer of the probe pins loaded on the socket. Similar to contact failure, and known as "fretting", this process widely occurs between two conductive surfaces due to the continual rupture and accumulation of oxide films. However, the failure mechanism at the probe pin differs from fretting. In this study, the microstructural processes and formation mechanisms of Sn oxide films developed on the probe pin surface were investigated. Failure analysis was conducted mainly by FIB-FESEM observations, along with EDX, AES, and XRD analyses. Soft and fresh Sn was found to be transferred repeatedly from the solder bump to the Au surface of the probe pins; it was then instantly oxidized to SnO. The $SnO_2$ phase is a more stable natural oxide, but SnO has been proved to grow on Sn thin film at low temperature (< $150^{\circ}C$). Further oxidation to $SnO_2$ is thought to be limited to 30%. The SnO film grew layer by layer up to 571 nm after testing of 50,500 cycles (1 nm/100 cycle). This resulted in the increase of contact resistance and thus of signal delay between the probe pin and the solder bump.

Development of design chart for estimating penetration depth of dynamically installed Hall anchors in soft clays

  • Haijun Zhao;Zhaohan Zhu;Jiawei Che;Wanchun Chen;Qian Yin;Dongli Guo;Haiyang Hu;Shuang Dong
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.209-220
    • /
    • 2023
  • In this study, a series of three-dimensional numerical analyses were carried out to investigate the penetration performance of a dynamically installed Hall anchor. The advanced coupled Eulerian-Lagrangian (CEL) technique was adopted to accurately simulate the large soil deformation during the vertical penetration of a Hall anchor. In total, 52 numerical analyses were conducted to investigate the relationship between anchor penetration depth and the initial kinematic energy. Moreover, a sensitivity analysis was performed to investigate the effects of soil shear strength and soil type on the penetration mechanism of a drop anchor under self-weight. There is a monotonic increase in the penetration depth with an increasing anchor weight when the topsoil of the riverbed is not subjected to erosion. On the other hand, all the computed depths significantly increase when soil erosion is taken into consideration. This is mainly due to an enhanced initial kinematic energy from an increased dropping depth. Both depths increase exponentially with the initial kinematic energy. An enhanced shear strength can potentially increase the side resistance and end-bearing pressure around a drop anchor, thus significantly reducing the downward penetration of a hall anchor. Design charts are developed to directly estimate penetration depth and associated plastic zone due to dynamically installed anchor at arbitrary soil shear strength and anchor kinematic energy.

AN EXPERIMENTAL STUDY ON THE REINFORCING EFFECT 01 MARINE DREDGING CLAY MIXED WITH MICRO-FIBER (Micro-Fiber의 혼합에 의한 해성준설점토의 보강에 관한 실험적 연구)

  • 박영목;허상목
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.143-155
    • /
    • 1999
  • An experimental study has been carried out to investigate the reinforcing effect of marine dredging clay(MDC) mixed with the Micro-Fiber(MF). A series of laboratory tests was performed using specimens of MDC alone and MDC with MF by means of uniaxial and triaxial compression test. In the test programme, three stages of water content of MDC were chosen according to the elapsed time after dredging, and content and length of MF were considered as important factors for reinforcing effect. And the developed strength due to curing was measured both in MDC and composite. The enhancement of strength of composite was found to be increased with the increasing content and length of MF, and curing time, and with decreasing water content of MDC. An additional study has been made for in-situ trafficability on the soft reclaimed ground by MDC due to high water content. It was found that the waste lime was to be applicable for this purpose to get a reinforcing effect of MDC. A further study would lead to the better understanding of the reinforcing mechanism of the composite.

  • PDF

Reinforcement of the Structure Foundation using Grouting(C.G.S) (그라우팅(C.G.S)에 의한 구조물 기초 보강)

  • 천병식;김진춘;권형석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.02a
    • /
    • pp.1-11
    • /
    • 2000
  • The use of Compaction Grouting evolved in 1950's to correct structural settlement of buildings. Over the almost 50 years, the technology has been developed and is currently used in wide range of applications. Compaction Grouting, the injection of a very stiff, 'zero-slump' mortar grout under relatively high pressure, displaces and compacts soils. It can effectively repair natural or man-made soil strength deficiencies in variety of soil formations. Major applications of Compaction Grouting include densifying loose soils or fill voids caused by sinkholes, poorly compacted fills, broken utilities, improper dewatering, or soft ground tunneling excavation. Other applications include preventing liquefation, re-leveling settled structures, and using compaction grout bulbs as structural elements of minipiles or underpinning. In this paper, on the basis of the case history constructed in this year, a study has been performed to analyze the basic mechanism of the Compaction Grouting. Also, the effectiveness of the ground improvement and the bearing capacity of the Compaction Pile has been verified by the Cone Penetration Test(CPT) and Load Test. Relatively uniform Compaction grouting column could be maintained by planning the Quality Control in the course of grouting. And, the Quality Control Plan has been conceived using grout pressure, volume of grout and drilling depth.

  • PDF

A Novel Method to Fabricate Tough Cylindrical Ti2AlC/Graphite Layered Composite with Improved Deformation Capacity

  • Li, Aijun;Chen, Lin;Zhou, Yanchun
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.369-374
    • /
    • 2012
  • Based on the structure feature of a tree, a cylindrical $Ti_2AlC$/graphite layered composite has been fabricated through heat treating a graphite column and six close-matched thin wall $Ti_2AlC$ cylinders bonded with the $Ti_2AlC$ powders at $1300^{\circ}C$ and low oxygen partial pressure. SEM examination reveals that the bond interlayers between cylinders or that between cylinder and column are not fully dense without any crack formation. During the compressive test, the strain of the $Ti_2AlC$/graphite layered composite is about twice higher than that of the monolithic $Ti_2AlC$ ceramic, and the compressive strength of the layered composite is 348 MPa. The layered composite show the noncatastrophic fracture behaviors due to the debonding and shelling off of the layers, which are different from the monolithic $Ti_2AlC$ ceramic. The mechanism of the improved deformation capacity and noncatastrophic failure modes are attributed to the presence of the central soft graphite column and cracks deflection by the bond interlayers.

Adaptive Resource Allocation for Traffic Flow Control in Hybrid Networks

  • Son, Sangwoo;Rhee, Byungho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.1
    • /
    • pp.38-55
    • /
    • 2013
  • Wireless network systems provide fast data transmission rates and various services to users of mobile devices such as smartphones and smart pads. Because many people use high-performance mobile devices, the use of real-time multimedia services is increasing rapidly. However, the preoccupation of resources by real-time traffic users is causing harm to other services-for example, frequent call interference, lowered service quality, and poor network performance. This paper suggests a resource allocation algorithm for effective traffic service support in a hybrid network. The main objective is to obtain an optimum value of data rates by comparing user requirements with the amount of resources that can be allocated. A new mechanism based on Adaptive-Quality of Service (QoS) and a monitoring system based on Queue-Aware are proposed. Adaptive-QoS supports effective resource control according to the type of traffic service, and the monitoring system based on Queue-Aware measures the amount of resources in order to calculate the maximum that can be allocated. We apply our algorithm to a test system and use Qualnet 4.5.1 to evaluate its performance.