• Title/Summary/Keyword: soft margin algorithm

Search Result 5, Processing Time 0.018 seconds

Support Vector Machines Controlling Noise Influence Effectively (서포트 벡터 기계에서 잡음 영향의 효과적 조절)

  • Kim, Chul-Eung;Yoon, Min
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.2
    • /
    • pp.261-271
    • /
    • 2003
  • Support Vector Machines (SVMs) provide a powerful performance of the learning system. Generally, SVMs tend to make overfitting. For the purpose of overcoming this difficulty, the definition of soft margin has been introduced. In this case, it causes another difficulty to decide the weight for slack variables reflecting soft margin classifiers. Especially, the error of soft margin algorithm can be bounded by a target margin and some norms of the slack vector. In this paper, we formulate a new soft margin algorithm considering the bound of corruption by noise in data directly. Additionally, through a numerical example, we compare the proposed method with a conventional soft margin algorithm.

Improving the Generalization Error Bound using Total margin in Support Vector Machines (서포트 벡터 기계에서 TOTAL MARGIN을 이용한 일반화 오차 경계의 개선)

  • Yoon, Min
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.1
    • /
    • pp.75-88
    • /
    • 2004
  • The Support Vector Machine(SVM) algorithm has paid attention on maximizing the shortest distance between sample points and discrimination hyperplane. This paper suggests the total margin algorithm which considers the distance between all data points and the separating hyperplane. The method extends existing support vector machine algorithm. In addition, this newly proposed method improves the generalization error bound. Numerical experiments show that the total margin algorithm provides good performance, comparing with the previous methods.

Prediction of bankruptcy data using machine learning techniques (기계학습 방법을 이용한 기업부도의 예측)

  • Park, Dong-Joon;Yun, Ye-Boon;Yoon, Min
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.3
    • /
    • pp.569-577
    • /
    • 2012
  • The analysis and management of business failure has been recognized to be important in the area of financial management in the evaluation of firms' performance and the assessment of their viability. To this end, effective failure-prediction models are needed. This paper describes a new approach to prediction of business failure using the total margin algorithm which is a kind of support vector machine. It will be shown that the proposed method can evaluate the risk of failure better than existing methods through some real data.

Genetic Outlier Detection for a Robust Support Vector Machine

  • Lee, Heesung;Kim, Euntai
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.96-101
    • /
    • 2015
  • Support vector machine (SVM) has a strong theoretical foundation and also achieved excellent empirical success. It has been widely used in a variety of pattern recognition applications. Unfortunately, SVM also has the drawback that it is sensitive to outliers and its performance is degraded by their presence. In this paper, a new outlier detection method based on genetic algorithm (GA) is proposed for a robust SVM. The proposed method parallels the GA-based feature selection method and removes the outliers that would be considered as support vectors by the previous soft margin SVM. The proposed algorithm is applied to various data sets in the UCI repository to demonstrate its performance.

Calculating the collapse margin ratio of RC frames using soft computing models

  • Sadeghpour, Ali;Ozay, Giray
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.327-340
    • /
    • 2022
  • The Collapse Margin Ratio (CMR) is a notable index used for seismic assessment of the structures. As proposed by FEMA P695, a set of analyses including the Nonlinear Static Analysis (NSA), Incremental Dynamic Analysis (IDA), together with Fragility Analysis, which are typically time-taking and computationally unaffordable, need to be conducted, so that the CMR could be obtained. To address this issue and to achieve a quick and efficient method to estimate the CMR, the Artificial Neural Network (ANN), Response Surface Method (RSM), and Adaptive Neuro-Fuzzy Inference System (ANFIS) will be introduced in the current research. Accordingly, using the NSA results, an attempt was made to find a fast and efficient approach to derive the CMR. To this end, 5016 IDA analyses based on FEMA P695 methodology on 114 various Reinforced Concrete (RC) frames with 1 to 12 stories have been carried out. In this respect, five parameters have been used as the independent and desired inputs of the systems. On the other hand, the CMR is regarded as the output of the systems. Accordingly, a double hidden layer neural network with Levenberg-Marquardt training and learning algorithm was taken into account. Moreover, in the RSM approach, the quadratic system incorporating 20 parameters was implemented. Correspondingly, the Analysis of Variance (ANOVA) has been employed to discuss the results taken from the developed model. Additionally, the essential parameters and interactions are extracted, and input parameters are sorted according to their importance. Moreover, the ANFIS using Takagi-Sugeno fuzzy system was employed. Finally, all methods were compared, and the effective parameters and associated relationships were extracted. In contrast to the other approaches, the ANFIS provided the best efficiency and high accuracy with the minimum desired errors. Comparatively, it was obtained that the ANN method is more effective than the RSM and has a higher regression coefficient and lower statistical errors.