• Title/Summary/Keyword: soft magnetic materials

Search Result 267, Processing Time 0.033 seconds

Prototype Electromagnetic-Noise Filters Incorporated with Nano-Granular Co41Fe38Al13O8 Soft Ferromagnetic Thin Films on Coplanar Transmission Lines

  • Sohn, Jae-Cheon;Byun, Dong-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.2 s.285
    • /
    • pp.74-78
    • /
    • 2006
  • A non-integrated type noise filter on a Coplanar Waveguide (CPW) transmission line is demonstrated by using a highly resistive $Co_{41}Fe_{38}Al_{13}O_8$ nanogranular thin film with the dimensions of $4\;mm (\iota)\times4\;mm(\omega)\times0.1\;{\mu}m(t)$. The noise suppression characteristics are evaluated without placing an insulating layer between the CPW line and the magnetic thin film. The insertion loss is very low being less than 0.3 dB and this low value is maintained up to 2 GHz. At a ferromagnetic resonance frequency of 3.3 GHz, the power loss is very large and the degree of noise attenuation is measured to be 3 dB. This level of noise attenuation is still small for real applications; however, considering the small magnetic volume used in this work, further improvement is expected by simply increasing the magnetic volume and by integrating the magnetic thin film into the CPW transmission line.

Dynamic Spin Switching of Magnetic Films and Tunnel Junctions

  • Miyazaki, T.;Ando, Y.;Kubota, H.;Mizukami, Y.;Nakamura, H.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.272-273
    • /
    • 2003
  • Spin dynamics has been investigated intensively in various kinds of fields. Most popular one is an initial permeability at high frequency. Also, magnetic after-effect such as thermal fluctuation of fine magnetic particles and disaccommodation in soft magnetic materials were extensively studied in the past. When we apply an external farce with the same frequency as that of the system being examined, the system absorbs the external energy and the precession enhances. It is called resonance in general. Among the various resonances, ferromagnetic resonance (FMR) has been used as a good tool to evaluate material constants such as saturation manetization or spin damping parameter by analyzing a resonance curve. In this talk first instinctive understanding of Gilbert spin damping and spin pumping will be explained. Then, experimental data for enhancement of Gilbert damping parameter (G) evaluated from FMR spectrum and spin precession measured by a time resolved pump-probe method for Permalloy thin film will be introduced. Finally, magnetization reversal observed by air-coplanar probe will be given.

  • PDF

Diagnostic efficacy of specialized MRI & clinical results of arthroscopic treatment in ankle soft tissue impingement syndrome (족근 관절 연부조직 충돌 증후군에서 MRI의 진단적 의의 및 관절경적 치료 결과)

  • Lee, Jin-Woo;Moon, Eun-Su;Kim, Sung-Jae;Hahn, Soo-Bong;Kang, Eung-Shick
    • Journal of Korean Foot and Ankle Society
    • /
    • v.7 no.2
    • /
    • pp.208-217
    • /
    • 2003
  • Introduction: Soft-tissue impingement syndrome is now increasingly recognized as a significant cause of the chronic ankle pain. As a method to detect soft-tissue ankle impingement, a characteristic history and physical examination, routine MR imaging, and direct MR arthrography were used. The efficacy of routine MR imaging has been controversial for usefulness because of low sensitivity and specificity. Direct MR artrhography was recommaned for diagnosis because of the highest sensitivity, specificity and accuracy, but it requires an invasive procedure. The purpose of this study is to investigate the diagnostic accuracy of Fat suppressed, contrast enhanced, three-dimensional fast gradient recalled acquisition in the steady state with rediofrequency spoiling magnetic resonance imaging(CE 3D-FSPGR MRI) and to evaluate the clinical outcome of the arthroscopic treatment in assessing soft-tissue impingement associated with trauma of the ankle. Materials and Methods: We reviewed 38 patients who had arthroscopic evaluations and preoperative magnetic resonance imaging studies(3D-FSPGR MRI) for post-traumatic chronic ankle pain between January 2000 and August 2002. Among them, 24 patients had osteochondral lesion, lateral instability, loose body, malunion of lateral malleoli, and peroneal tendon dislocation. The patient group consisted of 23 men and 15 women with the average age of 34 years(16-81 years). The mean time interval from the initial trauma to the operation was 15.5 months(3 to 40 months), The mean follow-up duration of the assessment was 15.6months(12-48 months). MRI was simultaneously reviewed by two radiologists blinded to the clinical diagnosis. The sensitivity, specificity and accuracy of MRI was obtained from radiologic and arthroscopic finding. Arthroscopic debridement and additional operation for associated disease were performed. We used a standard protocol to evaluate patients before the operation and at follow-up which includes American Orthopedic Foot and Ankle Society Ankle-Hindfoot Score. Results: For the assessment of the synovitis and soft tissue impingement, fat suppressed CE 3D-FSPGR MR imaging had the sensitivity of 91.9%, the specificity of 84.4 and the accuracy of 87.5%. AOFAS Ankle-Hindfoot Score of preoperative state was 69.2, and the mean score of the last follow-up was 89.1. These were assessed as having 50% excellent(90-100) and 50% good(75-89). The presence of other associated disease didn't show the statistically significant difference(>0.05). Conclusion: Fat suppressed CE 3D-FSPGR MR imaging is useful method comparable to MR arthrography for diagnosis of synovitis or soft-tissue impingement, and arthroscopic debridement results in good clinical outcome.

  • PDF

Diagnostic Imaging of Congenital Meningoencephalocele in a Holstein Calf

  • Kwon, Kyunghun;Lee, Byungho;Choi, Sooyoung;Cho, Jongki;Lee, Youngwon;Choi, Hojung
    • Journal of Embryo Transfer
    • /
    • v.32 no.1
    • /
    • pp.33-38
    • /
    • 2017
  • A 10-day-old, Holstein calf with facial mass of 10 cm in diameter at the forehead region referred to Veterinary Medical Teaching Hospital in Chungnam National University. The mass was soft and fluctuating swelling. It had normal skin and hair hanging forward from frontal region and was thought to contain cerebrospinal fluid. On the skull radiography, cauliflower like-irregular marginated, soft tissue opacity mass was identified craniodorsal to the frontal bone. The mass appeared as a cyst filled with anechoic fluid on ultrasonography. Soft tissue structures considered brain tissues were observed in the deep area of the mass. On the computed tomography, a large skull defect of left side frontal bone was found, and heterogeneous materials were exposed through the defect but exposure of cerebral meninges and brain tissue were not confirmative. On magnetic resonance imaging, herniated left brain parenchyma showed heterogenous T2 and T1 hyperinsensity. In the intracranium, T2 hyperinstense and T1 hypointense fluid was identified on the left side, instead of left cerebral parenchyma. Also leftward shift of right hemisphere and midline structure, including thalamus and midbrain, were observed. The definitive diagnosis was confirmed as a meningoencephalocele based on computed tomography and magnetic resonance imaging. The calf was euthanized and necropsy was performed. On necropsy, both hemisphere were developed unequally with different size. One side hemisphere was grown in the outside through 10 cm hole on the median plane.

The Effect of Additional Elements on the Tailored Magnetic Properties of Electrochemically Prepared CoPtP-X Alloys (전기화학적으로 제조한 CoPtP-X합금의 첨가제 효과에 따른 맞춤형 자기적 성질)

  • Park, H.D.;Lee, K.H.;Kim, G.H.;Jeung, W.Y.;Choi, D.H.;Lee, W.Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.2
    • /
    • pp.94-98
    • /
    • 2005
  • Coptp films with the additive elements (X=Fe, Mn) of varying concentrations were prepared by in-situ electrodeposition, to tailor their magnetic properties. Alloys of CoPtP-X (X=Fe, Mn) were synthesized by changing the solution concentrations of Fe and Mn for electrodeposition. In the electrodeposited CoFePtP alloys, preferred orientation of the electrodeposited films changed from hexagonal (001) to (100) direction with increasing iron contents as revealed by X-ray diffraction, and these films exhibited various magnetic properties ranging from a typical hard magnetic to a soft magnetic property in accordance with microstructural variations. In the case of Mn addition, excellent hard magnetic property was observed at a specific Mn concentration of 0.0126 M in the electrolyte, with the coercivity of 4630 Oe and squareness of 0.856 and this was attributed to the fact that magnetization easy-axis (hexagonal c-axis) coincides with the preferred growth orientation of the film confirmed by transmission electron microscopy.

Acupuncture stimulation for motor cortex activities: Evidence from 3T functional MRI study

  • 최보영;전신수;유승식;최기순;박상동;임은철;정성택;이형구;서태석
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.85-85
    • /
    • 2003
  • Purpose: To investigate whether or not acupuncture of GB34 produces a significant response of the modulation of somatomotor areas by functional magnetic resonance imaging (fMRI) study. Materials and methods: The acupoint, GB34, located in the back of the knee, is known to be effective in recovering motor function after stroke. Using 3T MRI scanner, functional MR imaging of the whole brain was peformed in 12 normal healthy subjects during two stimulation paradigms; acupuncture manipulation on GB34 and sham points. This study investigates the activation of the motor cortex elicited by a soft and an intensified stimulation of GB 34.Three different paradigms were carried out to detect any possible modulation of the Blood Oxygenation Level Dependent (BOLD) response in the somatomortor area to motor stimulation through acupuncture.

  • PDF

Design and Analyses of Vibration Driven Electromagnetic Energy Harvester with High Power Generation at Low Frequency (저주파수 진동형 전자기식 마이크로 발전기의 설계 및 해석)

  • Lee, Byung-Chul;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.102-106
    • /
    • 2011
  • This paper presents a design and analysis of an electromagnetic micro generator which can convert low frequency vibration energy to electrical power. The design aspects of the micro generator comprised planar spring, Cu coil and a permanent magnet(NdFeB). Threetype spring designs and four materials(Parylene, FR-4, Cu and Si) were compared to find resonance frequency. It was found that the resonance frequency will be changed according to the spring shape and material. Mechanical and magnetic parameters had been adjusted to optimize the output power through a comprehensive theoretical study.

Synthesis and Magnetic Property of Nanocrystalline Fe-Ni-Co Alloys during Hydrogen Reduction of Ni0.5Co0.5Fe2O4 (Ni0.5Co0.5Fe2O4의 수소환원에 의한 나노구조 Fe-Ni-Co 합금의 제조 및 자성특성)

  • Paek, Min Kyu;Do, Kyung Hyo;Bahgat, Mohamed;Pak, Jong Jin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.167-173
    • /
    • 2011
  • Nickel cobalt ferrite($Ni_{0.5}Co_{0.5}Fe_2O_4$) powder was prepared through the ceramic route by the calcination of a stoichiometric mixture of NiO, CoO and $Fe_2O_3$ at $1100^{\circ}C$. The pressed pellets of $Ni_{0.5}Co_{0.5}Fe_2O_4$ were isothermally reduced in pure hydrogen at $800{\sim}1100^{\circ}C$. Based on the thermogravimetric analysis, the reduction behavior and the kinetic reaction mechanisms of the synthesized ferrite were studied. The initial ferrite powder and the various reduction products were characterized by X-ray diffraction, scanning electron microscopy, reflected light microscope and vibrating sample magnetometer to reveal the effect of hydrogen reduction on the composition, microstructure and magnetic properties of the produced Fe-Ni-Co alloy. The arrhenius equation with the approved mathematical formulations for the gas solid reaction was applied to calculate the activation energy($E_a$) and detect the controlling reaction mechanisms. In the initial stage of hydrogen reduction, the reduction rate was controlled by the gas diffusion and the interfacial chemical reaction. However, in later stages, the rate was controlled by the interfacial chemical reaction. The nature of the hydrogen reduction and the magnetic property changes for nickel cobalt ferrite were compared with the previous result for nickel ferrite. The microstructural development of the synthesized Fe-Ni-Co alloy with an increase in the reduction temperature improved its soft magnetic properties by increasing the saturation magnetization($M_s$) and by decreasing the coercivity($H_c$). The Fe-Ni-Co alloy showed higher saturation magnetization compared to Fe-Ni alloy.

Investigation on Ferroelectric and Magnetic Properties of Pb(Fe1/2Nb1/2)O3 Fe-Site Engineered with Antisymmetric Exchange Interaction (반대칭 교환 상호작용을 갖도록 Fe-Site가 제어된 PbFe1/2Nb1/2O3의 강유전/자기적 특성 연구)

  • Park, Ji-Hun;Lee, Ju-Hyeon;Cho, Jae-Hyeon;Jang, Jong Moon;Jo, Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.297-302
    • /
    • 2022
  • We investigated the origin of magnetic behaviors induced by an asymmetric spin exchange interaction in Fe-site engineered lead iron niobate [Pb(Fe1/2Nb1/2)O3, PFN], which exhibits a room-temperature multiferroicity. The magnitude of spin exchange interaction was regulated by the introduced transition metals with a distinct Bohr magneton, i.e., Cr, Co, and Ni. All compositions were found to have a single-phase perovskite structure keeping their ferroelectric order except for Cr introduction. We discovered that the incorporation of each transition metal imposes a distinct magnetic behavior on the lead iron niobate system; antiferro-, hard ferro-, and soft ferromagnetism for Cr, Co, and Ni, respectively. This indicates that orbital occupancy and interatomic distance play key roles in the determination of magnetic behavior rather than the magnitude of the individual Bohr magneton. Further investigations are planned, such as X-ray absorption spectroscopy, to clarify the origin of magnetic properties in this system.

Base Isolation Performance of Friction Pendulum System using Magnetic Force (자력을 이용한 마찰진자 베어링의 면진성능)

  • Hwang, In-Ho;Shin, Ho-Jae;Lee, Jong-Seh
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.55-61
    • /
    • 2008
  • One of the most recent base-isolation systems to improve the earthquake resistance of structures is the Friction Pendulum System(FPS). Simple in design but with versatile properties, the FPS has been used in some of the world s largest seismically isolated buildings, bridges and chemical tanks. FPS using PTFE(Polytetrafl-uoroethylene) based material has been developed to provide a simple and effective way for structures to achieve earthquake resistance. PTFE materials are soft, and are apt to become deformed easily after a few working cycles. In this study, magnetic force is used rather than the usual PTFE materials to improve the material shortcomings. A MF-FPS(Magnetic force-Friction Pendulum System) is proposed, and us shown to effectively protect structures against earthquakes. To demonstrate the advantages of this new system, the MF-FPS is compared with FPS as an attempt to prove its performance. A six-degree-of-freedom model is considered as a numerical example. The ground acceleration data of El Centro, Mexico and Gebze earthquakes are used as seismic excitations. The results showed that MF-FPS improved performance compared with FPS.