• Title/Summary/Keyword: soft magnetic materials

Search Result 271, Processing Time 0.034 seconds

Magnetic Properties of $(\textrm{Fe}_{1-x}\textrm{Co}_{x})_{89}\textrm{Zr}_{11}$ Amorphous Films(II) ($(\textrm{Fe}_{1-x}\textrm{Co}_{x})_{89}\textrm{Zr}_{11}$ 비정질 자성박막의 자기특성(II))

  • Kim, Sang-Won
    • Korean Journal of Materials Research
    • /
    • v.9 no.8
    • /
    • pp.831-836
    • /
    • 1999
  • Magnetic properties of (Fe(sub)1-xCo(sub)x)(sub)89Zr11 amorphous films fabricated by RF sputtering method have been investigated as a function of Co content x. By means of two step field annealing at 190~20$0^{\circ}C$ for 10 minutes in the magnetic field of 130 Oe, the film with x=0.4 among the samples shows the superior soft magnetic properties in spite of showing the high magnetostriction. For example, the obtained properties of coercivity and differential permeability measured in an exciting field of 10 mOe at the frequency of 8.7 MHz are 0.25 Oe and 280, respectively. It is confirmed that such behavior is due to the variation of magnetic anisotropies caused by a optimal compressive stress within the film.

  • PDF

MICROMAGNETISM OF HARD AND SOFT MAGNETIC MATERIALS

  • Kronmuller, Helmut
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.366-371
    • /
    • 1995
  • High performance magnetic materials are characterized by the combination of outstanding magnetic properties and optimized microstructures, e.g., nanocrystalline composites of multilayers and small particle systems. The characteristic parameters of the hysteresis loops of these materials vary over more than a factor of $10^{6}$ with optimum values for the coercive field of several Tesla and permeabilities of $10^{6}$. Within the framework of the computational micromagnetism (nanomagnetism) using the finite element method the upper and lower bounds of the coercive field of different types of grain ensembles and multilayers have been determined. For the case of nanocrystalline composites the role of grain size, exchange and dipolar coupling between grains and the degree of grain alignment will be discusses in detail. It is shown that the largest coercivities are obtained for exchange decoupled grains, whereas remanence enhancing requires exchange coupled grains below 20 nm. For composite permanent magnets based on $Nd_{2}Fe_{14}B$ with an amount of ~ 50% soft $\alpha$-Fe-phase coercivities of ${\mu}_{0}H_{c}=0.75\;T$, a remanence of 1.5 T and an energy product of $400\;kJ/m^{3}$ is expected. In nanocrystalline systems the temperature dependence of the coercivity is well described by the relation ${\mu}_{0}H_{c}=(2\;K_{1}/M_{s}){\alpha}-N_{eff}{\mu}_{0}M_{s}$, where the microstructural parameters $\alpha$ and $N_{eff}$ take care of the short-range perturbations of the anisotropy and $N_{eff}$ is related to the long-range dipolar interactions. $N_{eff}$ is found to follow a logarithmic grain size size dependence ${\mu}_{0}H_{c}=(2\;K_{1}/M_{s}){\alpha}-N_{eff}(\beta1nD){\mu}_{0}M_{s}$. Several trends how to achieve the ideal situation $\alpha$->1 and $N_{eff}$->1->0 will be discussed.

  • PDF

A New LC Resonator Fabricated by MEMS Technique and its Application to Magnetic Sensor Device (MEMS 공정에 의한 LC-공진기형 자기센서의 제작과 응용)

  • Kim, Bong-Soo;Kim, Yong-Seok;Hwang, Myung-Joo;Lee, Hee-Bok
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.3
    • /
    • pp.141-146
    • /
    • 2007
  • A new class of LC-resonator for micro magnetic sensor device was invented and fabricated by means of MEMS technique. The micro LC-resonator consists of a solenoidal micro-inductor with a bundle of soft magnetic microwire cores and a capacitor connected in parallel to the micro-inductor. The core magnetic material is a tiny glass coated $Co_{83.2}B_{3.3}Si_{5.9}Mn_{7.6}$ microwire fabricated by a glasscoated melt spinning technique. The core materials were annealed at various temperatures $150^{\circ}C,\;200^{\circ}C\;,250^{\circ}C\;,$ and $300^{\circ}C$ for 1 hour in a vacuum to improve soft magnetic properties. The solenoidal micro-inductors fabricated by MEMS technique were $500{\sim}1,000{\mu}m$ in length with $10{\sim}20$ turns. The changes of inductance as a function of external magnetic field in micro-inductors with properly annealed microwire cores were varied as much as 370%. Since the permeability of ultra soft magnetic microwire is changing rapidly as a function of external magnetic field. The inductance ratio as well as magnetoimpedance ratio (MIR) in a LC-resonator was varied drastically as a function of external magnetic field. The MIR curves can be tuned very precisely to obtain maximum sensitivity. A prototype magnetic sensor device consisting of the developed microinductors with a multivibrator circuit was test successfully.

A Study of Magnetic Properties in $Fe_{73.9}Cu_{1.0}Nb_{3.5}Si_{14.0}B_{7.6}$ by Magnetic Annelaing

  • Kim, Eng-Chan;Kim, Jin-Eui;Nam, Hyo-Duk
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.3
    • /
    • pp.29-33
    • /
    • 2000
  • The crystallographic and high frequency characteristics of $Fe_{73.9}Cu_{1.0}Nb_{3.5}Si_{14.0}B_{7.6}$ soft magnetic alloys were investigated under magnetic field annealing, The crystallization fraction of annealed samples with longitudinal magnetic fields is higher than that of samples without magnetic field. When the transverse magnetic field is applied, the crystallization fraction does not increases but decreases until $500^{circ}C$. It is found that for samples, the saturation induction are all same with 1.3 T. The coercive field of as-cast samples is 1.03 A/cm, but in annealed samples it decrease from 0.56 to 0.1A/cm with increasing annealing temperature from 400 to $550^{circ}C$. The squareness of annealed samples under transverse magnetic field has a small value than that of both without field and with longitudinal field annealing. It is noted that the magnetic field annealing with transverse direction to amorphous $Fe_{73.9}Cu_{1.0}Nb_{3.5}Si_{14.0}B_{7.6}$ profoundly influenced on the Mossbauer spectra in contrast to that with longitudinal direction and without magnetic field.

  • PDF

Fabrication of RF Inductor Using FeTaN Patterned Soft Magnetic Films (Patterned FeTaN 연자성 박막을 이용한 RF inductor의 제조)

  • Bae, Seok;Kim, Choong-Sik;Ryu, Sung-Ryong;Nam, Seoung-Eui;Kim, Hyoung-June;Song, Jae-Sung;Yamaguchi, Masahiro
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.6
    • /
    • pp.239-244
    • /
    • 2001
  • Recently, RF inductor having researched by many workers, we fabricated and investigated properties of RF inductors. In order to improve the Q-factor (Quality), we try to apply the patterned Fe$_{78.81}$Ta$_{8.47}$N$_{12.71}$ soft magnetic thin film of 5000 which shows magnetic anisotropy of 30 Oe. Thus, patterned magnetic film was artificially increased magnetic anisotropy lead to increasing of ferro-magnetic resonance frequency up to GHz band. Coil as part of inductor was fabricated by lift off process. The dimension of RF inductor was designed 47un, rectangular shape, and measured properties. In the case of Ti/Ag air core type inductor shows Q of 9, inductance of 8.4 nH at 2 GHz. Magnetic film employed inductor shows inductance of 9 nH and FMR resonance frequency was 700 MHz.

  • PDF

Magnetic Properties of Nanocrystalline CoW Thin Film Alloys Electrodeposited from Citrate Baths

  • Park, Doek-Yong;Ko, Jang-Myoun
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.4
    • /
    • pp.236-241
    • /
    • 2003
  • Magnetic CoW thin film alloys were electrodeposited from citrate baths to investigate the resulting microstructure and magnetic properties. Deposit tungsten (W) content in the films electrodeposited at $70^{\circ}C$ were independent of current density, while coercivity decreased from hard $(H_{c,//}\~150\;Oe\;and\;H_{c.{\bot}}\;\~240\;Oe)$ to soft magnetic properties $(H_{c,//}\~20\;Oe\;and\;H_{c.{\bot}}\;\~30\;Oe)$ with increasing current densities from $10\;to\;100mA{\cdot}cm^2$, with deposit W content $(\~40\%)$ relatively unaffected by the applied current density. X-ray diffraction analysis indicated that hcp $Co_3W$ phases [(200), (201) and (220) planes] in the CoW films electrodeposited at $70^{\circ}C\;and\;10mA{\cdot}cm^{-2}$ were dominant, whereas amorphous CoW phases with small amount of hcp $Co_3W$ [(002) planes] were dominant with deposition at $70^{\circ}C\;and\;100mA{\cdot}cm^{-2}$. At intermediate current densities $(25\;and\;50mA{\cdot}cm^{-2}),\;hop\;Co_3W$ phases [(200), (002), (201) and (220)] were observed. The average grain size was measured to be 30 nm from Sheller formula. It is suggested that the change of the deposit coercivities in the CoW thin films electrodeposited at $70^{\circ}C$ is attributed to the change of microstructures with varying the current density. Nanostructured $Co_3W/amorphous-CoW$ multilayers were fabricated by alternating current density between 10 and $100 mA{\cdot}cm^{-2}$, varying the individual layer thickness. The magnetic properties of $Co_3W/amorphous-CoW$ multilayers were strongly dependent on the thickness of the alternating hard and soft magnetic thin films. The nanostructured $Co_3W/amorphous-CoW$ multilayers exhibited a shift from low to high coercivities suggesting a strong coupling effect.

Soft x-ray magneto-optical effect as a nanometer scale probe of heteromagnetic structures widely used in spintronics devices

  • Kim, Sang-Koog
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2003.05a
    • /
    • pp.7-7
    • /
    • 2003
  • Heteromagnetic nanostructures, which consist of two or more different layers such as nonmagnet, insulator, ferromagnet, antiferromagnet, and superconductor, have been widely used in current and likely future spintronics devices. Their many intriguing magnetic properties are originated from a variety of magnetic interactions at relevant length scales at or near interfaces and between different constituent layers as well as laterally different regions in chemical and magnetic heterogeneity. The fundamental properties can thus differ along depth and laterally in the film plane, depending on their relevant coupling length scales. The entire properties may be characterized by interface properties and/or the depth-varying properties of the individual constituent layers, and lateral inhomogeneity as well. It is a challenge to investigate both depth-varying properties and lateral heterogeneity in such heteromagnetic nanostructures. In this talk, soft x-ray magneto-optical effect as a nanometer scale probe of a variety of heteromagnetic structures is presented and its related noble techniques are introduced. For instances, magnetization vector imaging to investigate vector spin configurations in the film plane is presented, as well as the Kerr rotation, ellipticity, and intensity measurements as a depth sensitive probe on the atomic scales.

  • PDF

Effects of Crystal Grain Size and Particle Size on Core Loss For Fe-Si Compressed Cores

  • Takemoto, Satoshi;Saito, Takanobu
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1183-1184
    • /
    • 2006
  • Core loss of soft magnetic powder cores have been focused on to achieve high efficiency of power supplies. In this study the effects of crystal grain size on core loss were investigated by changing heat treatment conditions. It was found that core loss is influenced by crystal grain size because eddy current loss decreased and hysteresis loss increased by making crystal grain size smaller, and it is also influenced by particle size.

  • PDF