• 제목/요약/키워드: soft magnetic materials

검색결과 267건 처리시간 0.031초

몬테카를로 방사선 수송 모델을 활용한 우주방사선 차폐체 설계 관련 선행연구 (Preliminary Study of Cosmic-ray Shielding Material Design Using Monte-Carlo Radiation Transport Code)

  • 강창우;김영찬
    • 한국방사선학회논문지
    • /
    • 제16권5호
    • /
    • pp.527-536
    • /
    • 2022
  • 본 연구는 우주방사선 차폐물질 설계를 위한 선행연구 차원에서 우주방사선에 대한 물질별 방사선 차폐특성을 분석하였다. 특히 EMP 및 방사선 차폐에 효과가 있다고 알려진 경량 연자성 복합소재에 대한 우주방사선 차폐물질 활용 가능성을 확인하고자 하였다. 이를 위해 Monte Carlo N-Particle(MCNP) 모델링 기법과 열중성자 차폐실험을 수행하였으며, MCNP의 우주방사선 모델인 Skymap.dat를 활용하였다. 연구결과 폴리에틸렌, 붕소폴리에틸렌, 탄소나노튜브 등 탄소와 수소를 함유한 물질의 경우 증발 중성자 에너지 영역 대 이하의 중성자 감소에 효과적인 것으로 나타났으며 SS316, 경량 연자성 물질 등 철을 함유한 물질은 캐스케이드 중성자 차폐성능이 뛰어난 것을 확인할 수 있었다. 특히 경량 연자성 물질의 경우 붕소를 함유하고 있어 저속중성자 영역의 중성자 감소에도 효과적인 것으로 나타났으며, 향후 탄소 및 수소 등 탄성산란 물질을 보강한다면 우주방사선 중성자 전 영역에서 유의미한 차폐효과를 보여줄 것으로 기대된다.

철계 연자성 합금 분말을 함유한 고무 복합재의 전파흡수특성 (Microwave Absorbing Properties of Rubber Composites Containing Soft Magnetic Fe-Alloy Particles)

  • 조한신;김성수
    • 한국분말재료학회지
    • /
    • 제20권2호
    • /
    • pp.125-128
    • /
    • 2013
  • Magnetic and dielectric properties of rubber composites are controlled by using two kinds of high-permeability metal particles with different electrical conductivity (Sendust, Permalloy), and their effect on microwave absorbance has been investigated, focusing on the quasi-microwave frequency band (0.8-2 GHz). Noise absorbing sheets are composite materials of magnetic flake particles of high aspect ratio dispersed in polymer matrix with various filler amount of 80-90 wt.%. The frequency dispersion and magnitude of complex permeability is almost the same for Sendust and Permalloy composite specimens. However, the complex permittivity of the Permalloy composite (${{\varepsilon}_r}^{\prime}{\simeq}250$, ${{\varepsilon}_r}^{{\prime}{\prime}}{\simeq}50$) is much greater than that of Sendust composite (${{\varepsilon}_r}^{\prime}{\simeq}70$, ${{\varepsilon}_r}^{{\prime}{\prime}}{\simeq}0$). Due to the large dielectric permittivity of Permalloy composite, the absorbing band is shifted to lower frequency region. However, the investigation of impedance matching reveals that the magnetic permeability is still small to satisfy the zero-reflected condition at the quasi-microwave frequency band, resulting in a small microwave absorbance lower than 10 dB.

Hysteresis Loops, Critical Fields and Energy Products for Exchange-spring Hard/soft/hard Trilayers

  • Chen, B.Z.;Yan, S.;Ju, Y.Z.;Zhao, G.P.;Zhang, X.C.;Yue, M.;Xia, J.
    • Journal of Magnetics
    • /
    • 제20권1호
    • /
    • pp.31-39
    • /
    • 2015
  • Macroscopic hysteresis loops and microscopic magnetic moment distributions have been determined by a three-dimensional (3D) model for exchange-coupled Sm-Co/${\alpha}-Fe$/Sm-Co trilayers with in-plane collinear easy axes. These results are carefully compared with the popular one-dimensional (1D) micromagnetic models and recent experimental data. It is found that the results obtained from the two methods match very well, especially for the remanence and coercivity, justifying the calculations. Both nucleation and coercive fields decrease monotonically as the soft layer thickness $L^s$ increases while the largest maximum energy product (roughly 50 MGOe) occurs when the thicknesses of hard and soft layers are 5 nm and 15 nm, respectively. Moreover, the calculated angular distributions in the thickness direction for the magnetic moments are similar. Nevertheless, the calculated nucleation and pinning fields as well as the energy products by 3D OOMMF are systematically smaller than those given by the 1D model, due mainly to the stray fields at the corners of the films. These demagnetization fields help the magnetic moments at the corners to deviate from the previous saturation state and facilitate the nucleation. Such an effect enhances as $L^s$ increases. When the thicknesses of hard and soft layers are 10 nm and 20 nm, respectively, the pinning field difference is as large as 30%, while the nucleation fields have opposite signs.

Prototype Milli Gauss Meter Using Giant Magnetoimpedance Effect in Self Biased Amorphous Ribbon

  • Kollu, Pratap;Yoon, Seok-Soo;Kim, Gun-Woo;Angani, C.S.;Kim, Cheol-Gi
    • Journal of Magnetics
    • /
    • 제15권4호
    • /
    • pp.194-198
    • /
    • 2010
  • In our present work, we developed a GMI (giant magnetoimpedance) sensor system to detect magnetic fields in the milli gauss range based on the asymmetric magnetoimpedance (AGMI) effect in Co-based amorphous ribbon with self bias field produced by field-annealing in open air. The system comprises magnetoimpedance sensor probe, signal conditioning circuits, A/D converter, USB controller, notebook computer, and program for measurement and display. Sensor probe was constructed by wire-bonding the cobalt based amorphous ribbon with dimensions $10\;mm\;{\times}\;1\;mm\;{\times}\;20\;{\mu}m$ on a printed circuit board. Negative feedback was used to remove the hysteresis and temperature dependence and to increase the linearity of the system. Sensitivity of the milli gauss meter was 0.3 V/Oe and the magnetic field resolution and environmental noise level were less than 0.01 Oe and 2 mOe, respectively, in an unshielded room.

인공신경망을 이용한 벌크 비정질 합금 소재의 포화자속밀도 예측 성능평가 (Artificial Neural Network Supported Prediction of Magnetic Properties of Bulk Metallic Glasses)

  • 남충희
    • 한국재료학회지
    • /
    • 제33권7호
    • /
    • pp.273-278
    • /
    • 2023
  • In this study, based on the saturation magnetic flux density experimental values (Bs) of 622 Fe-based bulk metallic glasses (BMGs), regression models were applied to predict Bs using artificial neural networks (ANN), and prediction performance was evaluated. Model performance evaluation was investigated by using the F1 score together with the coefficient of determination (R2 score), which is mainly used in regression models. The coefficient of determination can be used as a performance indicator, since it shows the predicted results of the saturation magnetic flux density of full material datasets in a balanced way. However, the BMG alloy contains iron and requires a high saturation magnetic flux density to have excellent applicability as a soft magnetic material, and in this study F1 score was used as a performance indicator to better predict Bs above the threshold value of Bs (1.4 T). After obtaining two ANN models optimized for the R2 and F1 score conditions, respectively, their prediction performance was compared for the test data. As a case study to evaluate the prediction performance, new Fe-based BMG datasets that were not included in the training and test datasets were predicted using the two ANN models. The results showed that the model with an excellent F1 score achieved a more accurate prediction for a material with a high saturation magnetic flux density.

Electronic structure studies of Co-substituted FINEMET alloys by x-ray absorption spectroscopy

  • Chae, K.H.;Gautam, S.;Song, J.H.;Kane, S.N.;Varga, L.K.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.377-377
    • /
    • 2010
  • FINEMET type nanocrystalline materials synthesized by controlled crystallization of amorphous ribbons[1] exhibit excellent soft magnetic properties making them attractive for technological applications. Present work reports the electronic structure studies of Co-substituted FINEMET to get information on the effect of successive Co substitution on local environment around Fe and Co atom by using near edge x-ray absorption fine structure (NEXAFS) and x-ray magnetic circular dichroism (XMCD) measurements. NEXAFS spectroscopy and XMCD measurements have been carried out at Fe $L_{3,2}$ and Co $L_{3,2}$-edges to investigate the chemical states and electronic structure of FINEMET [$(Fe_{100-x}Co_x)_{78}Si_9Nb_3Cu_1Ba$](0$L_{3,2}$-edge reveal that Fe is in 2+ state and in tetrahedral symmetry with other elements. The magnetic properties exhibiting soft magnetic behavior[2] are discussed on the basis of the electronic structure studied through XMCD.

  • PDF

Thermal Stability, Mechanical Properties and Magnetic Properties of Fe-based Amorphous Ribbons with the Addition of Mo and Nb

  • Han, Bo-Kyeong;Jo, Hye-In;Lee, Jin Kyu;Kim, Ki Buem;Yim, Haein
    • Journal of Magnetics
    • /
    • 제18권4호
    • /
    • pp.395-399
    • /
    • 2013
  • The metallic glass ribbons of $[(Fe_xCo_{1-x})_{0.75}B_{0.2}Si_{0.05}]_{96}Mo_4$ (x = 0, 0.3, 0.6, 0.9 at.%) and $[(Fe_xCo_{1-x})_{0.75}B_{0.2}Si_{0.05}]_{96}Nb_4$ (x = 0, 0.3, 0.6, 0.9 at.%) were obtained by melt spinning with 25-30 ${\mu}m$ thickness. The thermal stability, mechanical properties and magnetic properties of Fe-Co-B-Si based systems were investigated. The values of thermal stability were measured using differential scanning calorimetry (DSC), including glass transition temperature ($T_g$), crystallization temperature ($T_x$) and supercooled liquid region (${\Delta}T_x=T_x-T_g$). These amorphous ribbons were identified as fully amorphous, using X-ray diffraction (XRD). The mechanical properties of Febased samples were measured by nano-indentation. Magnetic properties of the amorphous ribbons were measured by a vibrating sample magnetometer (VSM). The amorphous ribbons of $[(Fe_xCo_{1-x})_{0.75}B_{0.2}Si_{0.05}]_{96}Mo_4$ (x = 0, 0.3, 0.6, 0.9 at.%) and $[(Fe_xCo_{1-x})_{0.75}B_{0.2}Si_{0.05}]_{96}Nb_4$ (x = 0, 0.3, 0.6, 0.9 at.%) exhibited soft magnetic properties with low coercive force ($H_c$) and high saturation magnetization (Ms).